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Abstract Preserving continuity in 3D is another challenge for im-

plicit sweeps with arbitrary trajectories. Even if the s

A technique is presented for generating implicit sweep is not self-intersectin_g, the bognded _sca_ll_ar field defi_rii'magt
objects that support direct specification and manipulation SWeep may be. In this cage’ discontinuities can be intro-
of the surface with no topological limitations on the 2D duced in the field away from the surface, producing unex-
sweep template. The novelty of this method is that the underPected and undesired creases when blending multiple sur-
lying scalar field is bounded ar@' continuous, apartfrom ~ faces [BWdGO5].
surface creases. Bounded scalar fields guarantee local in-
fluence when modeling with implicit surfaces, an important ~ We present several improvements to the implicit sweep
usbility requirement for interactive modeling. A discrafe objects of [CBS96]. First, our technique produces the same
proximation is also described that supports fast evaluatio surface as a parametric sweep for a given closed contour
for bounded scalar fields. The new sweep objects are imple-and sweep trajectory, permitting direct surface specitinat
mented in an interactive BlobTree modeling tool, provid- and manipulation. Second, we eliminate the “star-shaped”
ing an intuitive and expressive free-form implicit modglin  sweep template restrictions of [CBS96]. Our bound&d
component. This sweep representation permits conversiorcontinous sweep template is defined by an arbitrary set of
of parametric sweep surfaces to implicit volumes. An ap- closed 2D contours which may include holes. We develop
plication to volume reconstruction from parallel contoiss  several endcap styles for open sweep trajectories, and use
also explored. the operators of [BWdGO5] to produce sweeps withcon-

tinuous bounded scalar fields.

Our underlying scalar fields are bounded, guaranteeing
1. Introduction local influence when modeling and preserveing an informal
“principle of least surprise” that is important for intetae

Generating a three-dimensional surface by sweeping aimplicit modeling. We integrate our sweep objects with the
2D curve along a 3D trajectory has a long history in com- BlobTreeimplicit modeling system [WGG99]. The Blob-
puter graphics [Req80]. This technique is nearly ubiquitou Tree supports constructive modeling of complex hierarchi-
in 3D parametric modeling software. However, few sweep cal implicit models. Since our sweeps permit direct surface
surface methods exist in the implicit domain [Blo97]. interaction, they are an intuitive and expressive freeafor

Several problems complicate the definition of implicit addition to the BlobTree. This sweep representation sup-
sweep surfaces. The standard technique for parametric surPOrts conversion of parametric sweep surfaces to implicit
faces involves forward mapp|ng of a sweep temp|ate from VOlUmeS, as well as ImpIICIt volume reconstruction from
2D to 3D, where the sweep template is a set of 2D con- parallel contours.
tours [Reg80]. In the implicit domain this mapping must be
inverted to sample the sweep template. This inverse map- We proceed by reviewing related work (Section 2), fol-
ping is often non-trivial and generally not unique. lowed by background material on implicit surfaces (Sec-

Implicit sweep templates are functionally-defined 2D tion 3). Two algorithms for converting contours to scalar
scalar fields that represent the desired contour [PSS96b]fields are described in Section 4, leading to the develop-
The template function should have local support and at leastment of implicit sweep objects in Section 5. Applications
C' continuity to produce implicit sweep objects suitable for of implicit sweep objects are presented in Section 6, fol-
use in interactive constructive modeling. lowed by our conclusions in Section 7.



2. Related Work 3. Implicit Modeling

Given a continuous scalar functigh: R?> — R, we can

Solid modeling by sweeping a 2D area along a 3D define a surfacé:
trajectory is a well known technique in computer graph- 3
ics [Req80] [FVDF93]. Most early CAD systems [RV82] §={pPeR": f(p) = viwo} @)
supported sweep surfaces as boundary representations (Rynereu, ,, is called théso-value We call this surface aim-
reps). These B-rep sweep solids lacked a robust mathematpjicit surface[Blo97]. Sincef defines a scalar field, we fre-
ical foundation, self-intersecting sweeps were simply in- quently refer to it as #ield functionor field. This definition
valid. Recent work on the more general problem of sweep- 5| holds in 2D, wher§ is a contour.
ing a 3D volume has produced several general sweep the- Equation 1 is misleading in it's mathematical concise-
ories, [AMBJOO] provides a recent survey. In particu- ness. Directly specifying functiofithat generates a desired
lar, [AMYBOO] explicitly calculates the b-rep created by gyrface is rather challenging. A reasonable approach is to
sweeping an implicitly-defined solid but requires symbolic jncrementally construct by combining a set of simple im-
representations of the solid and sweep trajectory. [SP96]pjicit surfaces, callegrimitives A useful class of primi-
functionally defines implicit swept volumes, however eval- tjyes areskeletal primitivesdefined by a geometric skele-
uating the resulting function requires slow non-linearn-opt on E and a one-dimensional function: R, — R... For
mization algorithms. each skeletorE, such as a point or line, we definedés-
tance function/g : R?* — R that computes the minimum

W97 WCO02 ject t
[SW97] and [WCO2] produce sweep objects represen eolEucIidean distance from to E. The field function is then:

with volume datasets. The sweep dataset is initialized by

sampling a sweep template specified as a 2D image. Vol- fe.o(p) = g o de(p) )

ume datasets have a high memory cost and cannot represent

arbitrary surface creases. The scalar fields produced &re no The resulting surface is primarily determined Iy

suitable for constructive implicit modeling[WGG99]. which we require to be finite. Whilg can be any func-
tion, a monotonically decreasing function with local sup-

[CBS96] describes implicit sweep primitives with a port is desirable. We use [Wyv]:

bounded scalar field. Profile curves defined in polar co-
ordinates are used to create an anisotropic distance field. Guywin(r) = (1 — 22)? ()
The sweep surface is an offset surface from the swept pro-
file curve, prohibiting direct surface specification. Pefil wherex is clamped to the rangf, 1]. This polynomial
curves are limited to “star-shapes” by the polar defini- Smoothly decreases frointo 0 over the valid range, with
tion. [Gri99] describes implicit generalized cylindersiah ~ zero tangents at each end. The iso-value should also be in
have a similar limitation. the rangg0, 1], we choosé).5.
An important property of this skeletal primitive defini-

The key issue in converting parametric sweep surfacestion is that the scalar field isounded meaning thaff = 0
to implicit form is the definition of a suitable sweep tem- oytside some sphere with finite radius. Bounded fields guar-
plate. A 2D scalar field must be defined that represents agntee local influence, preventing changes made to a small
closed 2D contour. This scalar field is then swept along part of a complex model from affecting distant portions of
some trajectory. [PSS96b] approximates the 2D contourthe surface. Local influence preserves a “principle of least
with a polygon and generates a smooth scalar field thatsyrprise” that is critical for interactive modeling.
represents this polygon. The scalar field can be smoothed Another useful property of skeletal primitives is that the

at polygon vertices to avoid gradient discontinuities o th  jso-valuev defines both an implicit surfacg and anim-

sweep surface. The method is extended to direct represenpjicit volume:

tation of cubic splines by [PSS96a], and field variation is

improved by [BDS03]. Variational interpolation [YT02] V={peR*: f(p) > viso} (4)

can also be applied to approximate a 2D contour with a . . o

scalar field. However, none of these techniques produce &-©MPosition operators [Ric73] [WGG99] on implicit sur-

2D scalar field that is bounded. faces are defined as scalar functions that can be nested to

incrementally construct complex models. Valid operators

To summarize, several implicit sweep models have beenshould at minimum produce a new scalar field that defines

proposed that support direct surface specification and ma-a closed surface and preserves the volume definition (Equa-

nipulation. However, none of these models produces thetion 4). Under these conditions it is impossible to create a

bounded scalar fields necessary for interactive modeling ofscalar field that does not define a valid surface and volume.

complex hierarchical models [SWGO5]. This is a desirable property for interactive modeling.



Finally we consider field continuity. Operators that pre- 4. 2D Scalar Field Generation
serveC'! (gradient) continuity are necessary because the
field gradient is used to calculate surface normafsdis- In the parametric domain a 3D sweep surface is created
continuities in the field can produce unexpected creasesusing a 2D curv&€. However, in the implicit domain we are
in blend surfaces (Figure 1). This is a significant prob- creating 3D volumes. Hence we must resttcto closed
lem for interactive modeling with implicit surfaces. Imgiti contours. To create a sweep primitive suitable for use in the
sweep objects with self-intersecting scalar fields oftemco BlobTree,C should be represented by a bounded, contin-
tain C'! discontinuities. Our development of implicit sweeps uous 2D scalar field. We describe two methods for scalar
is largely driven by the need to avoid this situation. field generation in this section. Note that the constantsmen
tioned assumé€ has been translated and uniformly scaled
such that it is contained in a unit square centered at the ori-

gin.

4.1. Signed distance fields

(@) (b) () _ _
One approach to creating a 2D scalar field represent-
Figure 1. Various common implicit surface ing a closed contouf is to create aigned distance field
operators, such as the Ricci CSG Union, A signed distance fielés a mapping froniR3 to R, where
create C° discontinuities in the scalar field. each poinp is mapped to the minimum distance frgo
While this is desirable on the surface (a) C. Points inside are mapped to negative distances. Apply-
the discontinuity exists throughout the field. iNg guwyvir (Equation 3) to the infinite signed distance field
When a primitive is blended, (b), the surface creates a bounded field but also an offset contour. Adding
will appear to have a crease where the dis- a constant distance shift, determined by inverting.u,
continuity region (a plane in this case) inter- aligns the iso-contous; s, with C.
sects the blend surface. Using C! CSG oper- Unfortunately this technique does not result in a contin-
ators avoids this issue (c). uous field. IfC is a circle, a single point of'! discontinu-
ity exists at the center of the circle. Asstretches into an
ellipse, the discontinuity stretches into a lineClfis non-
convex,C* discontinuity lines exist inside and outside the
o o curve (Figure 2). We conclude that signed distance fields
3.1. Variational Implicit Curves are incompatible with our continuity requirement.
One useful technique for generating a 2D scalar field is o ] ]
by interpolating a set of 2D field value samplgs,,v;),  4-2. Variational psuedo-distance fields
wherew; is the desired field value at point;. We use a
variational interpolation scheme based on thin-platensgli Discontinuity lines are inherent in the definition of a dis-

which is globallyC? continuous. Variational interpolation ~tance field. Yet a distance field is desirable - using.iu
has been used in 3D to define implicit Surfaces [YT02]. We (Equation 3) we can convert from a distance field to a
will apply similar techniques in section 4.2 to create an im- Pounded scalar field with good blending properties. Our so-
plicit curve that approximates a 2D cun@s lution is to define gpsuedo-distance fieldvhich is an ap-

To unify notation we will denote the variational field Proximation to a distance field that is smooth near the dis-

function asfc, although the following equation describes continuity lines.

general variational interpolation. The functiga(u) is de- ~ Convolution [SW97] can be used to smooth a distance
fined in terms of point§m;,v;) weighted by coefficients ~ field. However, convolution modifies the iso-contay,.
w;, and a polynomiaP (u) = ¢ U, + cau, + cs: Instead we approximate contodrwith a psuedo-distance

field fc generated using variational interpolation (Sec-
fe(u) = ZwiHu —m;|*In(|ju —m;[)) + P(u) (5) tion 3.1). We then apply.,,..u t0 fc to create a bounded,

. o continous 2D scalar field,;:
The weightsw; and coefficientg;, co, andcz are found

by solving a linear system defined by evaluating Equation 5 Jr(U) = guyvin © fe(u) (6)
at each known solutiolfic (m;) = v;. These coefficients de-

termine a variational solution which is guaranteed to inter It is critical that the sample points used to solve farbe
polate all sample pointév;,v;) with C? continuity while defined such that the iso-contogr, i © fe(U) = vis IS
minimizing global curvature [Duc77]. coincident withC.
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Figure 3. Variational constraints at point C;
on contour C. (a) shows location of addi-
tional constraints along contour normal n;.
(b) shows constraints with “distance” as
third dimension. Constraints at ~ z; ensure that
the variational solution (gray line) increases
away from C.

Figure 2. 2D scalar field created using Equa-
tion 6. Iso-contours are hilighted using sin
function before mapping to grayscale. Iso-
surface is marked in red. Sharp creases in

contours are C'! discontinuities. S

We begin by creating a set of constraint poifts, s)
which lie onC. The values is determined by inverting Equa-
tion 3 and evaluating at our desired iso-valug,. Unfortu-
nately the miminal-curvature solution for these constgin
is a scalar field with constant valyeAdditional constraints
are necessary to create a psuedo-distance field.

For each point;, we add two more constraint points
(c;+£n;-As, s+ As), wheren; is the normal t&€ atc;. The
value As is a small positive distance. We u8&5, which
produces a reasonable approximation to a distance field for
many curves. IC has thin sections a smaller value may be
necessary (see Section 4.3). The location of these points is Figure 4. 2D scalar field created using Equa-

illustrated in Figure 3 o tion 6. Iso-contours hilighted using  sin func-
The constraint points shown in Figure 3a are not suf- o pefore mapping to grayscale. Iso-surface
ficient to guarantee thafe approximates a distance field is marked in red. Field is globally € continu-

at points far fromC. Near sharply concave features the s
field values may decrease away frémThis is due to the
curvature-minimization property of Equation 5.

We add a final set of constraint points;, z), where
pointsz; lie on a circle of radiug. SinceC lies in a unit box
centered at the origin, we use a radius2ofThese points

force fc to increase away frorg, and guarantee that that zero-crossing of the function generally has a non-zero tan-

field will be bounded W'th;]n the _C'r,de olf rald'l_?s h | gent. This results in &' discontinuity at the outer edge of
We can now compute the variational solution. The result- 4, field, creating undesirable blending artifacts.

ing function fcz can be applied in Equation 6 to produce a

bounded(C? continuous scalar field where the iso-contour

viso lies onC. An example is shown in Figure 4. A use- 4.3. Limitations of variational approximation

ful property of this formulation is that we are not limited to

a single closed contour. The constraint points for multiple  The iso-contourfy; = v;s, only approximates the initial
disjoint contours, including “hole” contours, can be salve contourC. Approximation accuracy depends on the sam-
simultaneously to produce a single variational field. pling of C and placement of the normal projection points

It is possible to approximate Equation 6 directly with
a variational formulation. Although this does produce a
bounded field and an iso-contouy,, that lies onC, the



(Figure 3a).
depth.
Tangent discontinuities (creases)(@ncannot be accu-
rately reproduced becausk is globally C? continuous.
This is an inherent property of variational interpolation.

[CBCO1] and [YTOZ2] treat these issues in

3D pointsp. We assume th#&(s) is affine and maps the 2D
origin to 7 (s), implying that pointsd=(s) - u are co-planar
(Figure 5).

Note that when converting 2D pointto 3D pointp, we
append) as the third coordinate. Going from 3D to 2D, we

Crease representation can be improved by increasing thaimply drop the third coordinate. Application of this con-

curve sampling rate, but this can lead to instability in the
variational solution.

It is not strictly guaranteed thgt increase away from
C in all directions. However, consider Figure 3b. For our
technique to fail the grey curve must reverse direction be-
tween the planes at = s andd = 2 while still interpo-
lating all pointsz; and minimizing global curvature. It may
be possible that a long, thin protrusiondrcould result in
fc “escaping” between twe;’s. This situation can be de-
tected by sampling between’s and corrected by increas-
ing the sampling density. We note that while using oty
equally-spaced samples we have yet to encounter this is-
sue.

4.4. Discrete approximation with field images

Evaluating the variational functiorfic is O(N) in the
number of constraint points used to solve for the variationa
solution. This results in a field function (Equation 6) that
is too expensive for interactive use. The cost can be re-
duced by discretizing’,,. We create dield imageby sam-
pling fr at regular intervals. The field image is essentially

version will be determined by context and not explicitly de-
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Figure 5. Forward and inverse mapping from
sweep template field f; to 3D space. Func-
tion F(s) maps 2D point u to 3D point p ly-
ing in plane defined by 7 (s) and n(s). Inverse
map F~'(s) maps from pto u.

noted.
—

Fis) P ']('s)
T

a grayscale image, as can be seen in the inset of Figure
. Smooth reconstruction filters are then applied to the field
image to create an approximatigij, to fy, that can be
evaluated in constant time.

We implementf;, using the Biquadratic reconstruction
filter [BMDSO02]. Nine samples are necessary to evaluate
the Biquadratic filter ati but the result isC' continuous.

An alternative is the Bilinear reconstruction filter, whieh

“

A possible definition forfs is:

fs(p) = fu(u),  F(s)-u=p @)

Unfortunately, given only a point we cannot directly eval-
uate this equation because the parameter valaad 2D

quires only 4 samples and is inexpensive to evalaute, butpoint u are unknown. Sinc&(s) is affine we can compute

also produceg’? discontinuities [BMDS02] across pixel
boundaries. All figures in this paper were generated using
biquadratic reconstruction applied to field images with a
resolution of1282. The results are visually indistinguish-
able from actual evaluation d¢f,;.

5. Sweep primitives

An implicit sweep primitive is defined by a 2Bweep
template fieldf,; (Equation 6) and a 3Bweep trajectory
7. We will assume thaf” is a parametric function:

0<s<1

The sweep surfac8 is defined by a 3D scalar fielfk.
Given a point7 (s) on the sweep trajectory, we can define
a geometric transformatioR(s) that maps 2D points to

the inverse mapping ! (s):

fs(p) = fa(u), ®)

However, s is still unknown, and not necessarily unique
(Figure 6).

F(s) transforms the 2D plane into some 3D plane pass-
ing through7 (s) with normaln(s) (Figure 5). Since there
may be more than one plane that passes thrqughig-
ure 6), we must define a set of parameter valigy = s;
such thap lies in the plane at;:

S(p) = {si : (p—T(s))-n(s) =0} 9)

To compute the field valugis(p) we must evaluate
Equation 8 for each parameter valgec S(p). The result-
ing field values are combined with a composition operator

u=F"(s)p



Blobby EndcapA blobby endcap is created by evaluating
fuinear Past the end of the sweep line and scaling it down to
zero. We us@.,y.iu (Equation 3) to smoothly terminate the
field. A parametet., .., determines the extent of the field
beyond the end of the sweep line. If the parameter value at
the line endpoint i$,,, .., we evaluate:

fendcap(p) = gwym’ll <|5|_Smaz> : flinear(p) (12)

dendcap

Field continuity is preserved by the zero tangentg.qf.iu;.
The endcap width varies (Figure 7) becaygg.., has in-
creasing values inside the sweep contour.

Figure 6. Point p lies on planes at points 7 (s1)
and 7 (s2). Unique inverse mapping F~'(s)
does not exist.

G, such as a CSG union operator [Ric73], to produce a sin-
gle field value. Our final definition:

fs@) =G ({fu(F'(s))-p) : s, €S(p)}) (10)

can be evaluated for any trajectory where the parameter set
S(p) is computable.

&Y

Figure 7. Blobby endcap style. Sweep pro-
file (left) determines width of endcap at each
point (middle). Width is dependent on field
value inside the profile (right). Isocontour is

marked in red.

5.1. Linear Trajectory

A simple and efficient sweep primitive is the linear
sweep, oextrusion[BDS*03], where the sweep trajectory
is a straight line between poingsandb. In this caseF(s)
is unique,s = (p — &) - n wheren is the unit vector
(b —a)/||b — a||. Given two mutually perpendicular vec-
torsk; andk, which lie in the plane defined hy, we de-
fineF;;}  (s): Flat Endcap With Smooth TransitioiBWdGO05] defines
hybrid CSG/blending operators that smooth out the CSG
transition zone but are otherwise identical to sharp CSG op-
whereRot[k; k» n] is homogeneous transformation matrix erators. We perfo_r_m an intersection with an infinite plane
with upper left3x3 submatrix k1 ko n] " andTr[— (a+sn)] to smoothly transition from the sweep surface to a flat end-

is a homogeneous translation matrix with translation com- €. The size of the transition zone is controllable, Figure
ponent—(a -+ sn) Twisting and scaling can be introduced shows endcaps with varying parameter values. This oper-

into the sweep surface by varyikg andks along the tra- ator converges to &' field discontinuity as the transition
jectory. zone size decreases. Note that to preserve field continuity

The linear sweep scalar fie, ... is then defined as the operqtor should be _applied to the entire sweep. We in-
X tersect with a constant field value bfn the sweep region.
fiinear () = /31 (Fiincar () - P) Flat Endcap With Sharp TransitiofBWdG05] defines an-
The function f;,..., defines an scalar field of infinite ex- other type of CSG operator that produces the traditional
tent alongn which must explicitly be bounded to cap the CSG surface but preserv€s continuity in the field away
ends of the sweep surface. The field should extend for somegrom the surface. In this case intersection with an infinite
distanced.,q.qp beyond the sweep line endpoints to permit plane creates a sharp transition that preserves field conti-
blending. It is desirable to have some control over the end-nuity. We intersect with a constant field value Iofn the
cap shape. Existing implicit sweeps [CBS96] create end-sweep region to preserve continuity. Figure 9 compares the

caps by linearly interpolating the sweep template values tofield created with this operator and the intersection opera-
zero. We define three alternative endcap styles. tor of [Ric73], which create€! discontinuities.

Fitear(s)=Rot[ki ko n]-Tr [—(a+sn)] (11)

linear
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Figure 8. Flat endcap style with smooth tran-
sition. Transition parameter varies from left
to right 30°, 35°, 40°. Rightmost image shows
scalar field for 35° parameter. Isocontour is
marked in red.

 BEl

Figure 9. Flat endcap with sharp transition.
C' discontinuity on surface produces sharp
crease (left) but does not propagate away
from the surface with Barthe CSG intersec-

tion (middle). Ricci intersection produces Ct

discontinuity away from surface (right). Iso-
contour is marked in red.

5.2. Cubic Bezier Trajectory

However5”(s) = 0 in degenerate cases such as straight
sections. The Frenet frame can also flip direction across
points of inflection, creating® discontinuities. An alterna-
tive is the rotation minimizing frame of [Blo90]. This frame

is procedurally defined based on an initial frame5346)

and cannot be calculated analytically. In order to genexate
frame at any, a table of rotation minimizing framés; can

be calculated at points; along the curver; ! . (s)is then
found by locating the neares} < s and computing a rota-
tion minimizing frame front;.

Open trajectories should be capped. The cap styles de-
scribed in Section 5.1 are all applicable to arbitrary taje
tories and are applied in the same way. Twisting and scaling
can also be applied based ewr an arc-length parameteri-
zation of B(s).

The implicit surface behavior in self-intersecting cases,
which frequently occur with curving trajectories, is ealyr
determined by the operat¢r (Equation 10).G should be
applied to all field values produced with the solutions to
Equation 13, as well as the endcap field values. The CSG
Union operator of [Ric73] produces a closed manifold sur-
face but alsoC*! discontinuities in the scalar field (Fig-
ure 10). Barthe’s CSG Union operator with sharp transi-
tion [BWdGO05] can be used to preserve both the surface
creases and gradient continuity in the field away from the
surface.

As an example of a general trajectory we consider a 3D
cubic Bezier curves(s), s € [0, 1]. Assume that the nor-
mal functionn(s) (Equation 9) is the tangent vectBf(s).
The following polynomial ins must be solved to find the pa-
rameter value s&(p):

(p—B(s)) - B'(s) =0

This polynomial is degreé for a cubic Bezier curve,
precluding analytic solution. Numerical root-finding tech
niques such as [Sch90] can be used to solve for the roots

Figure 10. Bezier curve sweeps. Holes in tem-
plate are supported (left). Scalar field in self-
(13) intersecting cases (middle) is  C' continuous

using Barthe CSG union operator (right top).
Ricci union operator produces C' disconti-
nuities (right bottom).

S.
OnceS(p) is computed we can evaludtg !, (s):
F—l

benier(s) =Rot[ky ko B'(s)] - Tr [-B(s)] 5.3. Circular Trajectory

Care needs be taken when defining the vedterandks.

One option is to calculate tH&enet framgFvDF*93]:

ki = B'(s) x B"(s)
kg = k1 X B/(S)

Circular sweeping trajectories, described by a paint
and a normalized axim, result insurfaces of revolution
Several restrictions are necessary to provide an implieit ¢
cular sweep definition that is valid for any trajectory and
sweep template. The sweep function, Equation 10, cannot



be evaluated at points lying on the axishecause the set
S(p) (Equation 9) is infinite. To define circular sweeps we
make a simplifying assumption - that the template orienta-
tion and scaling is constant. Under this constraint the infi-
nite parameter set maps to a single point

Since we disallow twisting and scaling, it is possible to
compute poinu in the sweep template corresponding to a
point p without finding the anglé on the circular trajec-
tory. The 2D coordinates are found geometrically:

Figure 12. Circular trajectory sweep surfaces.

u,=(P-0)-n
Uz = [[(p —0) — uyn||

The 2D coordinates corresponding to the opposing

side of the circle arg—u,,u,). These sample points re- g 1. |nteractive BlobTree modeling

sult in two field values which we compose with the

Barthe Union operator [BWdGO05] to produce a gradient-  The sweep primitives described in Section 5 can be used
continuous scalar field. directly in implicit modeling systems such as tBéob-

To support partial circular sweeps the paramefer Tree [WGG99]. Sweep primitives implemented using the
must be computed. The necessary equations can be foungiscrete approximation technique of section 4.4 are very ef
in [WCO02]. Our endcap techniques should be applied to par-ficient. We use them in an interactive BlobTree modeling
tial sweeps to prevent® discontinuity when the sweep tgol.
terminates. A key limitation for interactive implicit modeling is vi-
sualizing the current surface. We visualize BlobTree mod-

6. Applications

A :T els by generating a polygonal mesh that approximates the

p i\\‘”\J in surface [Blo94]. The main cost of polygonization is eval-

- Y —1— uating the field function. Linear and circular sweeps can

C .; ] 7O be polygonized at resolutions adequate for modeling, pro-
T vided the sweep contour does not have very small fea-
S Fu : tures. Performance quickly degrades when composing

(a) (b) Iu © several _sweeps_in a BlobTree. However, with hi_erar_cr_]i-

cal spatial caching [SWGO05] a large number of implicit

Figure 11. Invertible sweeps produce torus- sweep prim_itives can be manipulated inte_ract?vely, in-
like surfaces (a), while self-intersecting cluding bezier curve sweeps. The mo_dels in Figures 13
sweeps (b) are non-invertible because degen- and 16 were all created.usmg our interactive system.
erate points on n lie inside the field bounds. We note that zero-length linear sweeps Wlth blobby enq-
Geometric computation of 2D sweep tem- It;gps ar1e6very useful for character modeling, as shown in

igure 16.

plate coordinates is shown in (c). ) , ) )
We note that while solving the linear system defined by

Equation 5 isO(N?), the number of constraint points is

usually less than one thousand. We use an SIMD-optimized
Note thatu, > 0, |mp|y|ng that the portion of the sweep LAPACK implementation that solves these systems with

template to the left of the axis in Figure 11b is never sam- double precision in a few seconds on a 1.6Ghz Pentium 4

pled. This can be desirable as it is analogous to revolving anProcessor.

open curve around an axis between the curve endpoints. Un-

fortunately it also produces@' discontinuity at points on  6.2. Parametric to Implicit sweep conversion
n where f,; is not continuougC'! continuous across thg

axis. Many existing parametric modeling tools define sweep
We also note that in certain cases (Figure 11a) field val- surfaces using a boundary representation. In this case the
ues alongn are outside the bounds ¢f, and therefore). sweep template is the contodl, usually defined para-

Here twisting can be safely applied, although for full circu  metrically, and the sweep trajectory is a 3D parametric
lar sweeps the twist angle needs be a whole multiplerof ~ curve 7 (s). The boundary representation has several lim-
to avoidC" discontinuities. A similar limitation applies for itations. Operations such as CSG, or even simple point-
scaling. inclusion testing, require complex numerical techniques.
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Figure 14. Parametric sweep (left) and corre-
sponding implicit sweep (middle). Parametric

sweep vertices colored by implicit approxi-

mation error (right). Error values have been
Figure 13. Implicit BlobTree models com- scaled by 1000.

posed entirely of sweeps, blending, and CSG.
Each model was created interactively in un-
der 30 minutes.

parametet € [0, 1]:

Moy ) = (L= 1) far, + () fr,
Self-intersecting sweeps are difficult to handle [AMBJO0O] ] ] .
because the definition of “inside” is ambiguous. Algorithms A sweep surface with varying cross section can be created
for measuring physical properties, such as volume, oftenbY sweeping the templatgy,.,..., (s), where s is scaled to
our implicit ~ sweep representation easily the two templates r_egardless (_)f topology. Interpplatm_n be
handles degenerate conditons, CSG is well- tweenn templates is accomplished by successively inter-

supported [Ric73] [WGG99] [BWdGO5], and point- polating between pairs of templates. Given a set of contours
inclusion testing is trivial using the implicit volume defin ~ Ci» @ closed surface can be reconstructed that passes through

ition (Equation 4). Conversion from parametric sweeps to all the contours.

our implicit sweeps is trivial, we simply re-use the para- A Variety of techniques for implicit surface recon-
metric contour contouf and trajectoryZ” (Section 5). struction from contours are available [SPOK95] [AG04]

An important consideration when converting parametric [CBC*01] [YTO2]. One benefit of our approach is that

sweeps to implicit sweeps is error introduced by the con-the resulting field is very eff|C|_ent to evaluate. In Fig-

version. The 2D scalar field is produced using variational ure 15 a human' L3 vertebra is r'econstructed from 93

techniques that only approximatgSection 4.3). However, segm_ented CT slices (See als_o Figure 18) - The recon-

by increasing the curve sampling rate when solving fior struction process takes _appro?(lmately_ 6 rT"””_'tes’ however

(Section 4.2) the variational solution can be tightly con- once complete the '”.‘p"c" O.bJeCt (W.h'Ch 1S simply a lin-

strained. An example of parametric conversion is shown in ear sweep) can be interactively edited in our BlobTree

Figure 14. In this case the maximum surface deviation is system

less thard.5%, which occurs at the high-curvature features.

Interactive tools for implicit modeling can take advan- 7. Conclusion

tage of this coherence between parametric and implicit

representations. The sweep surface can be quickly visual- We have presented ne@' continuous implicit sweep

ized during interactive manipulation using parametrititec  objects that have a bounded scalar field. Our sweep tem-

niques. Once manipulation is complete, the implicit model plate fields can be generated from any set of closed 2D con-

is re-polygonized. tours, including contours with “holes”. Implicit sweep ob-
jects generated with our template fields are visually indis-
tinguishable from triangle meshes created by sweeping the

6.3. Surface reconstruction from parallel contours same contour, even when using"a discrete approxima-
tion to the 2D scalar field. Our endcap styles for open tra-

It is possible to interpolate between the two sweep tem- jectories preserve field continuity, as do the CSG union op-
plate fieldsfy,, and fa;, along a sweep with respect to a erators applied for self-intersecting sweeps.



ity afforded by our approach may have significant applica-
tions in surgical training simulators.

Figure 15. Surface reconstruction from con-
tours. Human L3 vertebra is reconstructed
from 93 slices (left) and interactively modified
in a BlobTree modeling system (right). High-
frequency ridges on vertebra surface are due
to manual segmentation errors.

These contributions permit direct specification and ma-
nipulation of the implicit surface for a large class of
free-form shapes. Direct surface interaction is desirfdile
shape modeling, but has not been available for implicit sur-
faces with bounded fields. Bounded fields are necessary to
achieve scalable interactive performance [SWGO05] and pre-
serve the “principle of least surprise” that is key for inter
active tools.

We have found that we rely on these sweep primitives al-
most exclusively when using our interactive BlobTree mod-
eling tool. However the traditional modeling interface is
very limited when working with complex hierarchical mod-
els. One avenue for future research is the development of
new interface metaphors and tools appropriate for interac-
tive BlobTree modeling.

We have performed only very limited exploration into

Figure 16. Implicit BlobTree models com-
posed mostly of zero-length linear sweeps
with blobby endcaps. Top model also uses
Bezier sweep for nose and revolution for hat.

parametric to implicit sweep conversion. Though the sur-
face error in our tests was less tha3%, this may still
be outside of the acceptable tolerances for CAD/CAM ap-

plications. A direction for future work would be to repre- References
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Figure 17. Implicit sweep subtracted from
blobby object. Sweep contours are specified
by bitmap image.




Figure 18. Various views of Human L3 Vertebra reconstructed by interpolating between planar im-
plicit sweeps.




