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Abstract

A technique is presented for generating implicit sweep
objects that support direct specification and manipulation
of the surface with no topological limitations on the 2D
sweep template. The novelty of this method is that the under-
lying scalar field is bounded andC1 continuous, apart from
surface creases. Bounded scalar fields guarantee local in-
fluence when modeling with implicit surfaces, an important
usbility requirement for interactive modeling. A discreteap-
proximation is also described that supports fast evaluation
for bounded scalar fields. The new sweep objects are imple-
mented in an interactive BlobTree modeling tool, provid-
ing an intuitive and expressive free-form implicit modeling
component. This sweep representation permits conversion
of parametric sweep surfaces to implicit volumes. An ap-
plication to volume reconstruction from parallel contoursis
also explored.

1. Introduction

Generating a three-dimensional surface by sweeping a
2D curve along a 3D trajectory has a long history in com-
puter graphics [Req80]. This technique is nearly ubiquitous
in 3D parametric modeling software. However, few sweep
surface methods exist in the implicit domain [Blo97].

Several problems complicate the definition of implicit
sweep surfaces. The standard technique for parametric sur-
faces involves forward mapping of a sweep template from
2D to 3D, where the sweep template is a set of 2D con-
tours [Req80]. In the implicit domain this mapping must be
inverted to sample the sweep template. This inverse map-
ping is often non-trivial and generally not unique.

Implicit sweep templates are functionally-defined 2D
scalar fields that represent the desired contour [PSS96b].
The template function should have local support and at least
C1 continuity to produce implicit sweep objects suitable for
use in interactive constructive modeling.

Preserving continuity in 3D is another challenge for im-
plicit sweeps with arbitrary trajectories. Even if the surface
is not self-intersecting, the bounded scalar field defining the
sweep may be. In this caseC1 discontinuities can be intro-
duced in the field away from the surface, producing unex-
pected and undesired creases when blending multiple sur-
faces [BWdG05].

We present several improvements to the implicit sweep
objects of [CBS96]. First, our technique produces the same
surface as a parametric sweep for a given closed contour
and sweep trajectory, permitting direct surface specification
and manipulation. Second, we eliminate the “star-shaped”
sweep template restrictions of [CBS96]. Our boundedC2

continous sweep template is defined by an arbitrary set of
closed 2D contours which may include holes. We develop
several endcap styles for open sweep trajectories, and use
the operators of [BWdG05] to produce sweeps withC1 con-
tinuous bounded scalar fields.

Our underlying scalar fields are bounded, guaranteeing
local influence when modeling and preserveing an informal
“principle of least surprise” that is important for interactive
implicit modeling. We integrate our sweep objects with the
BlobTreeimplicit modeling system [WGG99]. The Blob-
Tree supports constructive modeling of complex hierarchi-
cal implicit models. Since our sweeps permit direct surface
interaction, they are an intuitive and expressive free-form
addition to the BlobTree. This sweep representation sup-
ports conversion of parametric sweep surfaces to implicit
volumes, as well as implicit volume reconstruction from
parallel contours.

We proceed by reviewing related work (Section 2), fol-
lowed by background material on implicit surfaces (Sec-
tion 3). Two algorithms for converting contours to scalar
fields are described in Section 4, leading to the develop-
ment of implicit sweep objects in Section 5. Applications
of implicit sweep objects are presented in Section 6, fol-
lowed by our conclusions in Section 7.



2. Related Work

Solid modeling by sweeping a 2D area along a 3D
trajectory is a well known technique in computer graph-
ics [Req80] [FvDF∗93]. Most early CAD systems [RV82]
supported sweep surfaces as boundary representations (b-
reps). These B-rep sweep solids lacked a robust mathemat-
ical foundation, self-intersecting sweeps were simply in-
valid. Recent work on the more general problem of sweep-
ing a 3D volume has produced several general sweep the-
ories, [AMBJ00] provides a recent survey. In particu-
lar, [AMYB00] explicitly calculates the b-rep created by
sweeping an implicitly-defined solid but requires symbolic
representations of the solid and sweep trajectory. [SP96]
functionally defines implicit swept volumes, however eval-
uating the resulting function requires slow non-linear opti-
mization algorithms.

[SW97] and [WC02] produce sweep objects represented
with volume datasets. The sweep dataset is initialized by
sampling a sweep template specified as a 2D image. Vol-
ume datasets have a high memory cost and cannot represent
arbitrary surface creases. The scalar fields produced are not
suitable for constructive implicit modeling[WGG99].

[CBS96] describes implicit sweep primitives with a
bounded scalar field. Profile curves defined in polar co-
ordinates are used to create an anisotropic distance field.
The sweep surface is an offset surface from the swept pro-
file curve, prohibiting direct surface specification. Profile
curves are limited to “star-shapes” by the polar defini-
tion. [Gri99] describes implicit generalized cylinders which
have a similar limitation.

The key issue in converting parametric sweep surfaces
to implicit form is the definition of a suitable sweep tem-
plate. A 2D scalar field must be defined that represents a
closed 2D contour. This scalar field is then swept along
some trajectory. [PSS96b] approximates the 2D contour
with a polygon and generates a smooth scalar field that
represents this polygon. The scalar field can be smoothed
at polygon vertices to avoid gradient discontinuities on the
sweep surface. The method is extended to direct represen-
tation of cubic splines by [PSS96a], and field variation is
improved by [BDS∗03]. Variational interpolation [YT02]
can also be applied to approximate a 2D contour with a
scalar field. However, none of these techniques produce a
2D scalar field that is bounded.

To summarize, several implicit sweep models have been
proposed that support direct surface specification and ma-
nipulation. However, none of these models produces the
bounded scalar fields necessary for interactive modeling of
complex hierarchical models [SWG05].

3. Implicit Modeling

Given a continuous scalar functionf : R
3 → R, we can

define a surfaceS:

S =
{

p ∈ R
3 : f(p) = viso

}

(1)

whereviso is called theiso-value. We call this surface anim-
plicit surface[Blo97]. Sincef defines a scalar field, we fre-
quently refer to it as afield functionor field. This definition
also holds in 2D, whereS is a contour.

Equation 1 is misleading in it’s mathematical concise-
ness. Directly specifying functionf that generates a desired
surface is rather challenging. A reasonable approach is to
incrementally constructS by combining a set of simple im-
plicit surfaces, calledprimitives. A useful class of primi-
tives areskeletal primitives, defined by a geometric skele-
ton E and a one-dimensional functiong : R+ → R+. For
each skeletonE, such as a point or line, we define adis-
tance functiondE : R

3 → R+ that computes the minimum
Euclidean distance fromp to E. The field function is then:

fE,g(p) = g ◦ dE(p) (2)

The resulting surface is primarily determined byE,
which we require to be finite. Whileg can be any func-
tion, a monotonically decreasing function with local sup-
port is desirable. We use [Wyv]:

gwyvill(x) = (1 − x2)3 (3)

wherex is clamped to the range[0, 1]. This polynomial
smoothly decreases from1 to 0 over the valid range, with
zero tangents at each end. The iso-value should also be in
the range[0, 1], we choose0.5.

An important property of this skeletal primitive defini-
tion is that the scalar field isbounded, meaning thatf = 0
outside some sphere with finite radius. Bounded fields guar-
antee local influence, preventing changes made to a small
part of a complex model from affecting distant portions of
the surface. Local influence preserves a “principle of least
surprise” that is critical for interactive modeling.

Another useful property of skeletal primitives is that the
iso-valuev defines both an implicit surfaceS and anim-
plicit volumeV:

V =
{

p ∈ R
3 : f(p) ≥ viso

}

(4)

Composition operators [Ric73] [WGG99] on implicit sur-
faces are defined as scalar functions that can be nested to
incrementally construct complex models. Valid operators
should at minimum produce a new scalar field that defines
a closed surface and preserves the volume definition (Equa-
tion 4). Under these conditions it is impossible to create a
scalar field that does not define a valid surface and volume.
This is a desirable property for interactive modeling.



Finally we consider field continuity. Operators that pre-
serveC1 (gradient) continuity are necessary because the
field gradient is used to calculate surface normals.C1 dis-
continuities in the field can produce unexpected creases
in blend surfaces (Figure 1). This is a significant prob-
lem for interactive modeling with implicit surfaces. Implicit
sweep objects with self-intersecting scalar fields often con-
tainC1 discontinuities. Our development of implicit sweeps
is largely driven by the need to avoid this situation.

Figure 1. Various common implicit surface
operators, such as the Ricci CSG Union,
create C0 discontinuities in the scalar field.
While this is desirable on the surface (a)
the discontinuity exists throughout the field.
When a primitive is blended, (b), the surface
will appear to have a crease where the dis-
continuity region (a plane in this case) inter-
sects the blend surface. Using C1 CSG oper-
ators avoids this issue (c).

3.1. Variational Implicit Curves

One useful technique for generating a 2D scalar field is
by interpolating a set of 2D field value samples(mi, vi),
wherevi is the desired field value at pointmi. We use a
variational interpolation scheme based on thin-plate splines
which is globallyC2 continuous. Variational interpolation
has been used in 3D to define implicit Surfaces [YT02]. We
will apply similar techniques in section 4.2 to create an im-
plicit curve that approximates a 2D curvesC.

To unify notation we will denote the variational field
function asfC , although the following equation describes
general variational interpolation. The functionfC(u) is de-
fined in terms of points(mi, vi) weighted by coefficients
wi, and a polynomialP(u) = c1ux + c2uy + c3:

fC(u) =
∑

wi‖u − mi‖
2 ln(‖u − mi‖) + P(u) (5)

The weightswi and coefficientsc1, c2, andc3 are found
by solving a linear system defined by evaluating Equation 5
at each known solutionfC(mi) = vi. These coefficients de-
termine a variational solution which is guaranteed to inter-
polate all sample points(vi, vi) with C2 continuity while
minimizing global curvature [Duc77].

4. 2D Scalar Field Generation

In the parametric domain a 3D sweep surface is created
using a 2D curveC. However, in the implicit domain we are
creating 3D volumes. Hence we must restrictC to closed
contours. To create a sweep primitive suitable for use in the
BlobTree,C should be represented by a bounded, contin-
uous 2D scalar field. We describe two methods for scalar
field generation in this section. Note that the constants men-
tioned assumeC has been translated and uniformly scaled
such that it is contained in a unit square centered at the ori-
gin.

4.1. Signed distance fields

One approach to creating a 2D scalar field represent-
ing a closed contourC is to create asigned distance field.
A signed distance fieldis a mapping fromR

3 to R, where
each pointp is mapped to the minimum distance fromp to
C. Points insideC are mapped to negative distances. Apply-
ing gwyvill (Equation 3) to the infinite signed distance field
creates a bounded field but also an offset contour. Adding
a constant distance shift, determined by invertinggwyvill,
aligns the iso-contourviso with C.

Unfortunately this technique does not result in a contin-
uous field. IfC is a circle, a single point ofC1 discontinu-
ity exists at the center of the circle. AsC stretches into an
ellipse, the discontinuity stretches into a line. IfC is non-
convex,C1 discontinuity lines exist inside and outside the
curve (Figure 2). We conclude that signed distance fields
are incompatible with our continuity requirement.

4.2. Variational psuedo-distance fields

Discontinuity lines are inherent in the definition of a dis-
tance field. Yet a distance field is desirable - usinggwyvill

(Equation 3) we can convert from a distance field to a
bounded scalar field with good blending properties. Our so-
lution is to define apsuedo-distance field, which is an ap-
proximation to a distance field that is smooth near the dis-
continuity lines.

Convolution [SW97] can be used to smooth a distance
field. However, convolution modifies the iso-contourviso.
Instead we approximate contourC with a psuedo-distance
field fC generated using variational interpolation (Sec-
tion 3.1). We then applygwyvill to fC to create a bounded,
continous 2D scalar fieldfM :

fM (u) = gwyvill ◦ fC(u) (6)

It is critical that the sample points used to solve forfC be
defined such that the iso-contourgwyvill ◦ fC(u) = viso is
coincident withC.



Figure 2. 2D scalar field created using Equa-
tion 6. Iso-contours are hilighted using sin
function before mapping to grayscale. Iso-
surface is marked in red. Sharp creases in
contours are C1 discontinuities.

We begin by creating a set of constraint points(ci, s)
which lie onC. The values is determined by inverting Equa-
tion 3 and evaluating at our desired iso-value,viso. Unfortu-
nately the miminal-curvature solution for these constraints
is a scalar field with constant values. Additional constraints
are necessary to create a psuedo-distance field.

For each pointci, we add two more constraint points
(ci±ni ·∆s, s±∆s), whereni is the normal toC atci. The
value∆s is a small positive distance. We use0.05, which
produces a reasonable approximation to a distance field for
many curves. IfC has thin sections a smaller value may be
necessary (see Section 4.3). The location of these points is
illustrated in Figure 3

The constraint points shown in Figure 3a are not suf-
ficient to guarantee thatfC approximates a distance field
at points far fromC. Near sharply concave features the
field values may decrease away fromC. This is due to the
curvature-minimization property of Equation 5.

We add a final set of constraint points(zj , z), where
pointszj lie on a circle of radiusz. SinceC lies in a unit box
centered at the origin, we use a radius of2. These points
force fC to increase away fromC, and guarantee that that
field will be bounded within the circle of radius2.

We can now compute the variational solution. The result-
ing functionfC can be applied in Equation 6 to produce a
bounded,C2 continuous scalar field where the iso-contour
viso lies onC. An example is shown in Figure 4. A use-
ful property of this formulation is that we are not limited to
a single closed contour. The constraint points for multiple
disjoint contours, including “hole” contours, can be solved
simultaneously to produce a single variational field.

Figure 3. Variational constraints at point ci

on contour C. (a) shows location of addi-
tional constraints along contour normal ni.
(b) shows constraints with “distance” as
third dimension. Constraints at zj ensure that
the variational solution (gray line) increases
away from C.

Figure 4. 2D scalar field created using Equa-
tion 6. Iso-contours hilighted using sin func-
tion before mapping to grayscale. Iso-surface
is marked in red. Field is globally C2 continu-
ous.

It is possible to approximate Equation 6 directly with
a variational formulation. Although this does produce a
bounded field and an iso-contourviso that lies onC, the
zero-crossing of the function generally has a non-zero tan-
gent. This results in aC1 discontinuity at the outer edge of
the field, creating undesirable blending artifacts.

4.3. Limitations of variational approximation

The iso-contourfM = viso only approximates the initial
contourC. Approximation accuracy depends on the sam-
pling of C and placement of the normal projection points



(Figure 3a). [CBC∗01] and [YT02] treat these issues in
depth.

Tangent discontinuities (creases) inC cannot be accu-
rately reproduced becausefC is globally C2 continuous.
This is an inherent property of variational interpolation.
Crease representation can be improved by increasing the
curve sampling rate, but this can lead to instability in the
variational solution.

It is not strictly guaranteed thatfC increase away from
C in all directions. However, consider Figure 3b. For our
technique to fail the grey curve must reverse direction be-
tween the planes atd = s andd = 2 while still interpo-
lating all pointszj and minimizing global curvature. It may
be possible that a long, thin protrusion inC could result in
fC “escaping” between twozj ’s. This situation can be de-
tected by sampling betweenzj ’s and corrected by increas-
ing the sampling density. We note that while using only15
equally-spaced sampleszj we have yet to encounter this is-
sue.

4.4. Discrete approximation with field images

Evaluating the variational functionfC is O(N) in the
number of constraint points used to solve for the variational
solution. This results in a field function (Equation 6) that
is too expensive for interactive use. The cost can be re-
duced by discretizingfM . We create afield imageby sam-
pling fM at regular intervals. The field image is essentially
a grayscale image, as can be seen in the inset of Figure 4
. Smooth reconstruction filters are then applied to the field
image to create an approximationf∗

M to fM that can be
evaluated in constant time.

We implementf∗

M using the Biquadratic reconstruction
filter [BMDS02]. Nine samples are necessary to evaluate
the Biquadratic filter atu but the result isC1 continuous.
An alternative is the Bilinear reconstruction filter, whichre-
quires only 4 samples and is inexpensive to evalaute, but
also producesC0 discontinuities [BMDS02] across pixel
boundaries. All figures in this paper were generated using
biquadratic reconstruction applied to field images with a
resolution of1282. The results are visually indistinguish-
able from actual evaluation offM .

5. Sweep primitives

An implicit sweep primitive is defined by a 2Dsweep
template fieldfM (Equation 6) and a 3Dsweep trajectory
T . We will assume thatT is a parametric function:

T (s) = (tx(s), ty(s), tz(s)), 0 ≤ s ≤ 1

The sweep surfaceS is defined by a 3D scalar fieldfS .
Given a pointT (s) on the sweep trajectory, we can define
a geometric transformationF(s) that maps 2D pointsu to

3D pointsp. We assume thatF(s) is affine and maps the 2D
origin to T (s), implying that pointsF(s) · u are co-planar
(Figure 5).

Note that when converting 2D pointu to 3D pointp, we
append0 as the third coordinate. Going from 3D to 2D, we
simply drop the third coordinate. Application of this con-
version will be determined by context and not explicitly de-
noted.

Figure 5. Forward and inverse mapping from
sweep template field fM to 3D space. Func-
tion F(s) maps 2D point u to 3D point p ly-
ing in plane defined by T (s) and n(s). Inverse
map F−1(s) maps from p to u.

A possible definition forfS is:

fS(p) = fM (u), F(s) · u = p (7)

Unfortunately, given only a pointp we cannot directly eval-
uate this equation because the parameter values and 2D
point u are unknown. SinceF(s) is affine we can compute
the inverse mappingF−1(s):

fS(p) = fM (u), u = F−1(s) · p (8)

However,s is still unknown, and not necessarily unique
(Figure 6).

F(s) transforms the 2D plane into some 3D plane pass-
ing throughT (s) with normaln(s) (Figure 5). Since there
may be more than one plane that passes throughp (Fig-
ure 6), we must define a set of parameter valuesS(p) = si

such thatp lies in the plane atsi:

S(p) = {si : (p − T (s)) · n(s) = 0} (9)

To compute the field valuefS(p) we must evaluate
Equation 8 for each parameter valuesi ∈ S(p). The result-
ing field values are combined with a composition operator



Figure 6. Point p lies on planes at points T (s1)
and T (s2). Unique inverse mapping F−1(s)
does not exist.

G, such as a CSG union operator [Ric73], to produce a sin-
gle field value. Our final definition:

fS(p) = G
( {

fM ( F−1(si) · p ) : si ∈ S(p)
} )

(10)

can be evaluated for any trajectory where the parameter set
S(p) is computable.

5.1. Linear Trajectory

A simple and efficient sweep primitive is the linear
sweep, orextrusion[BDS∗03], where the sweep trajectory
is a straight line between pointsa andb. In this caseF(s)
is unique,s = (p − a) · n where n is the unit vector
(b − a)/‖b − a‖. Given two mutually perpendicular vec-
torsk1 andk2 which lie in the plane defined byn, we de-
fineF−1

linear(s):

F−1

linear(s) = Rot
[

k1 k2 n
]

· Tr
[

−(a + sn)
]

(11)

whereRot [k1 k2 n] is homogeneous transformation matrix
with upper left3x3 submatrix [k1 k2 n]> andTr [−(a+sn)]
is a homogeneous translation matrix with translation com-
ponent−(a + sn) Twisting and scaling can be introduced
into the sweep surface by varyingk1 andk2 along the tra-
jectory.

The linear sweep scalar fieldflinear is then defined as

flinear(p) = fM

(

F−1

linear(s) · p
)

The functionflinear defines an scalar field of infinite ex-
tent alongn which must explicitly be bounded to cap the
ends of the sweep surface. The field should extend for some
distancedendcap beyond the sweep line endpoints to permit
blending. It is desirable to have some control over the end-
cap shape. Existing implicit sweeps [CBS96] create end-
caps by linearly interpolating the sweep template values to
zero. We define three alternative endcap styles.

Blobby EndcapA blobby endcap is created by evaluating
flinear past the end of the sweep line and scaling it down to
zero. We usegwyvill (Equation 3) to smoothly terminate the
field. A parameterdendcap determines the extent of the field
beyond the end of the sweep line. If the parameter value at
the line endpoint issmax, we evaluate:

fendcap(p) = gwyvill

(

|s| − smax

dendcap

)

· flinear(p) (12)

Field continuity is preserved by the zero tangents ofgwyvill.
The endcap width varies (Figure 7) becauseflinear has in-
creasing values inside the sweep contour.

Figure 7. Blobby endcap style. Sweep pro-
file (left) determines width of endcap at each
point (middle). Width is dependent on field
value inside the profile (right). Isocontour is
marked in red.

Flat Endcap With Smooth Transition[BWdG05] defines
hybrid CSG/blending operators that smooth out the CSG
transition zone but are otherwise identical to sharp CSG op-
erators. We perform an intersection with an infinite plane
to smoothly transition from the sweep surface to a flat end-
cap. The size of the transition zone is controllable, Figure8
shows endcaps with varying parameter values. This oper-
ator converges to aC1 field discontinuity as the transition
zone size decreases. Note that to preserve field continuity
the operator should be applied to the entire sweep. We in-
tersect with a constant field value of1 in the sweep region.

Flat Endcap With Sharp Transition[BWdG05] defines an-
other type of CSG operator that produces the traditional
CSG surface but preservesC1 continuity in the field away
from the surface. In this case intersection with an infinite
plane creates a sharp transition that preserves field conti-
nuity. We intersect with a constant field value of1 in the
sweep region to preserve continuity. Figure 9 compares the
field created with this operator and the intersection opera-
tor of [Ric73], which createsC1 discontinuities.



Figure 8. Flat endcap style with smooth tran-
sition. Transition parameter varies from left
to right 30◦, 35◦, 40◦. Rightmost image shows
scalar field for 35◦ parameter. Isocontour is
marked in red.

Figure 9. Flat endcap with sharp transition.
C1 discontinuity on surface produces sharp
crease (left) but does not propagate away
from the surface with Barthe CSG intersec-
tion (middle). Ricci intersection produces C1

discontinuity away from surface (right). Iso-
contour is marked in red.

5.2. Cubic Bezier Trajectory

As an example of a general trajectory we consider a 3D
cubic Bezier curveB(s), s ∈ [0, 1]. Assume that the nor-
mal functionn(s) (Equation 9) is the tangent vectorB′(s).
The following polynomial ins must be solved to find the pa-
rameter value setS(p):

(p − B(s)) · B′(s) = 0 (13)

This polynomial is degree5 for a cubic Bezier curve,
precluding analytic solution. Numerical root-finding tech-
niques such as [Sch90] can be used to solve for the roots
s.

OnceS(p) is computed we can evaluateF−1

bezier(s):

F−1

bezier(s) = Rot
[

k1 k2 B′(s)
]

· Tr
[

−B(s)
]

Care needs be taken when defining the vectorsk1 andk2.
One option is to calculate theFrenet frame[FvDF∗93]:

k1 = B′(s) × B′′(s)

k2 = k1 × B′(s)

HoweverB′′(s) = 0 in degenerate cases such as straight
sections. The Frenet frame can also flip direction across
points of inflection, creatingC0 discontinuities. An alterna-
tive is the rotation minimizing frame of [Blo90]. This frame
is procedurally defined based on an initial frame atB(0)
and cannot be calculated analytically. In order to generatea
frame at anys, a table of rotation minimizing framesFj can
be calculated at pointssj along the curve.F−1

bezier(s) is then
found by locating the nearestsj < s and computing a rota-
tion minimizing frame fromFj .

Open trajectories should be capped. The cap styles de-
scribed in Section 5.1 are all applicable to arbitrary trajec-
tories and are applied in the same way. Twisting and scaling
can also be applied based ons or an arc-length parameteri-
zation ofB(s).

The implicit surface behavior in self-intersecting cases,
which frequently occur with curving trajectories, is entirely
determined by the operatorG (Equation 10).G should be
applied to all field values produced with the solutions to
Equation 13, as well as the endcap field values. The CSG
Union operator of [Ric73] produces a closed manifold sur-
face but alsoC1 discontinuities in the scalar field (Fig-
ure 10). Barthe’s CSG Union operator with sharp transi-
tion [BWdG05] can be used to preserve both the surface
creases and gradient continuity in the field away from the
surface.

Figure 10. Bezier curve sweeps. Holes in tem-
plate are supported (left). Scalar field in self-
intersecting cases (middle) is C1 continuous
using Barthe CSG union operator (right top).
Ricci union operator produces C1 disconti-
nuities (right bottom).

5.3. Circular Trajectory

Circular sweeping trajectories, described by a pointo
and a normalized axisn, result insurfaces of revolution.
Several restrictions are necessary to provide an implicit cir-
cular sweep definition that is valid for any trajectory and
sweep template. The sweep function, Equation 10, cannot



be evaluated at points lying on the axisn because the set
S(p) (Equation 9) is infinite. To define circular sweeps we
make a simplifying assumption - that the template orienta-
tion and scaling is constant. Under this constraint the infi-
nite parameter set maps to a single pointu.

Since we disallow twisting and scaling, it is possible to
compute pointu in the sweep template corresponding to a
point p without finding the angleθ on the circular trajec-
tory. The 2D coordinates are found geometrically:

uy = (p − o) · n
ux = ‖(p − o) − uyn‖

The 2D coordinates corresponding to the opposing
side of the circle are(−ux, uu). These sample points re-
sult in two field values which we compose with the
Barthe Union operator [BWdG05] to produce a gradient-
continuous scalar field.

To support partial circular sweeps the parameterθ
must be computed. The necessary equations can be found
in [WC02]. Our endcap techniques should be applied to par-
tial sweeps to preventC0 discontinuity when the sweep
terminates.

Figure 11. Invertible sweeps produce torus-
like surfaces (a), while self-intersecting
sweeps (b) are non-invertible because degen-
erate points on n lie inside the field bounds.
Geometric computation of 2D sweep tem-
plate coordinates is shown in (c).

Note thatux ≥ 0, implying that the portion of the sweep
template to the left of the axis in Figure 11b is never sam-
pled. This can be desirable as it is analogous to revolving an
open curve around an axis between the curve endpoints. Un-
fortunately it also produces aC1 discontinuity at points on
n wherefM is not continuousC1 continuous across theY
axis.

We also note that in certain cases (Figure 11a) field val-
ues alongn are outside the bounds offM and therefore0.
Here twisting can be safely applied, although for full circu-
lar sweeps the twist angle needs be a whole multiple of2π
to avoidC0 discontinuities. A similar limitation applies for
scaling.

Figure 12. Circular trajectory sweep surfaces.

6. Applications

6.1. Interactive BlobTree modeling

The sweep primitives described in Section 5 can be used
directly in implicit modeling systems such as theBlob-
Tree [WGG99]. Sweep primitives implemented using the
discrete approximation technique of section 4.4 are very ef-
ficient. We use them in an interactive BlobTree modeling
tool.

A key limitation for interactive implicit modeling is vi-
sualizing the current surface. We visualize BlobTree mod-
els by generating a polygonal mesh that approximates the
surface [Blo94]. The main cost of polygonization is eval-
uating the field function. Linear and circular sweeps can
be polygonized at resolutions adequate for modeling, pro-
vided the sweep contour does not have very small fea-
tures. Performance quickly degrades when composing
several sweeps in a BlobTree. However, with hierarchi-
cal spatial caching [SWG05] a large number of implicit
sweep primitives can be manipulated interactively, in-
cluding bezier curve sweeps. The models in Figures 13
and 16 were all created using our interactive system.
We note that zero-length linear sweeps with blobby end-
caps are very useful for character modeling, as shown in
Figure 16.

We note that while solving the linear system defined by
Equation 5 isO(N3), the number of constraint points is
usually less than one thousand. We use an SIMD-optimized
LAPACK implementation that solves these systems with
double precision in a few seconds on a 1.6Ghz Pentium 4
processor.

6.2. Parametric to Implicit sweep conversion

Many existing parametric modeling tools define sweep
surfaces using a boundary representation. In this case the
sweep template is the contourC, usually defined para-
metrically, and the sweep trajectory is a 3D parametric
curveT (s). The boundary representation has several lim-
itations. Operations such as CSG, or even simple point-
inclusion testing, require complex numerical techniques.



Figure 13. Implicit BlobTree models com-
posed entirely of sweeps, blending, and CSG.
Each model was created interactively in un-
der 30 minutes.

Self-intersecting sweeps are difficult to handle [AMBJ00]
because the definition of “inside” is ambiguous. Algorithms
for measuring physical properties, such as volume, often
produce nonsense results in these degenerate cases.

Our implicit sweep representation easily
handles degenerate conditions, CSG is well-
supported [Ric73] [WGG99] [BWdG05], and point-
inclusion testing is trivial using the implicit volume defin-
ition (Equation 4). Conversion from parametric sweeps to
our implicit sweeps is trivial, we simply re-use the para-
metric contour contourC and trajectoryT (Section 5).

An important consideration when converting parametric
sweeps to implicit sweeps is error introduced by the con-
version. The 2D scalar field is produced using variational
techniques that only approximateC (Section 4.3). However,
by increasing the curve sampling rate when solving forfC
(Section 4.2) the variational solution can be tightly con-
strained. An example of parametric conversion is shown in
Figure 14. In this case the maximum surface deviation is
less than0.5%, which occurs at the high-curvature features.

Interactive tools for implicit modeling can take advan-
tage of this coherence between parametric and implicit
representations. The sweep surface can be quickly visual-
ized during interactive manipulation using parametric tech-
niques. Once manipulation is complete, the implicit model
is re-polygonized.

6.3. Surface reconstruction from parallel contours

It is possible to interpolate between the two sweep tem-
plate fieldsfM1

andfM2
along a sweep with respect to a

Figure 14. Parametric sweep (left) and corre-
sponding implicit sweep (middle). Parametric
sweep vertices colored by implicit approxi-
mation error (right). Error values have been
scaled by 1000.

parametert ∈ [0, 1]:

fMinterp
(t) = (1 − t)fM1

+ (t)fM2

A sweep surface with varying cross section can be created
by sweeping the templatefMinterp

(s), where s is scaled to
[0, 1]. The resulting surface smoothly transitions between
the two templates regardless of topology. Interpolation be-
tweenn templates is accomplished by successively inter-
polating between pairs of templates. Given a set of contours
Ci, a closed surface can be reconstructed that passes through
all the contours.

A variety of techniques for implicit surface recon-
struction from contours are available [SPOK95] [AG04]
[CBC∗01] [YT02]. One benefit of our approach is that
the resulting field is very efficient to evaluate. In Fig-
ure 15 a human L3 vertebra is reconstructed from 93
segmented CT slices (See also Figure 18) . The recon-
struction process takes approximately 6 minutes, however
once complete the implicit object (which is simply a lin-
ear sweep) can be interactively edited in our BlobTree
system

7. Conclusion

We have presented newC1 continuous implicit sweep
objects that have a bounded scalar field. Our sweep tem-
plate fields can be generated from any set of closed 2D con-
tours, including contours with “holes”. Implicit sweep ob-
jects generated with our template fields are visually indis-
tinguishable from triangle meshes created by sweeping the
same contour, even when using aC1 discrete approxima-
tion to the 2D scalar field. Our endcap styles for open tra-
jectories preserve field continuity, as do the CSG union op-
erators applied for self-intersecting sweeps.



Figure 15. Surface reconstruction from con-
tours. Human L3 vertebra is reconstructed
from 93 slices (left) and interactively modified
in a BlobTree modeling system (right). High-
frequency ridges on vertebra surface are due
to manual segmentation errors.

These contributions permit direct specification and ma-
nipulation of the implicit surface for a large class of
free-form shapes. Direct surface interaction is desirablefor
shape modeling, but has not been available for implicit sur-
faces with bounded fields. Bounded fields are necessary to
achieve scalable interactive performance [SWG05] and pre-
serve the “principle of least surprise” that is key for inter-
active tools.

We have found that we rely on these sweep primitives al-
most exclusively when using our interactive BlobTree mod-
eling tool. However the traditional modeling interface is
very limited when working with complex hierarchical mod-
els. One avenue for future research is the development of
new interface metaphors and tools appropriate for interac-
tive BlobTree modeling.

We have performed only very limited exploration into
parametric to implicit sweep conversion. Though the sur-
face error in our tests was less than0.5%, this may still
be outside of the acceptable tolerances for CAD/CAM ap-
plications. A direction for future work would be to repre-
sent the 2D contours exactly by integrating the functional
curve representation of [PSS96a] with the improved opera-
tors of [BDS∗03].

Finally, we have presented some basic results on surface
reconstruction from parallel contours. Implicit techniques
for this problem have been previously developed. The ben-
efit of our method is that the reconstructed model can be im-
ported directly into our BlobTree modeling tool. This pro-
vides another avenue to leverage existing models. The case
of medical data is particularly interesting - the interactiv-

ity afforded by our approach may have significant applica-
tions in surgical training simulators.

Figure 16. Implicit BlobTree models com-
posed mostly of zero-length linear sweeps
with blobby endcaps. Top model also uses
Bezier sweep for nose and revolution for hat.
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Figure 17. Implicit sweep subtracted from
blobby object. Sweep contours are specified
by bitmap image.



Figure 18. Various views of Human L3 Vertebra reconstructed by interpolating between planar im-
plicit sweeps.


