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Abstract

A technique is presented for generating implicit sweep objects that
support direct specification and manipulation of the surface with no
topological limitations on the 2D sweep template. The novelty of
this method is that the underlying scalar field has global properties
which are desirable for interactive implicit solid modeling, allow-
ing multiple sweep objects to be composed. A simple method for
converting distance fields to bounded fields is described, allowing
implicit sweep templates to be generated from any set of closed
2D contours (including “holes”). To avoid blending issues arising
from gradient discontinuities, a general distance field approxima-
tion technique is presented which preserves sharp creases on the

contour but is otherwise C2 smooth. Flat endcaps are introduced
into the 3D sweep formulation, which is implemented in the con-
text of an interactive hierarchical implicit volume modeling tool.

1 Introduction

One of the strongest benefits of implicit modeling is that implicit
volumes are trivial to compose using simple functions. In the con-
text of hierachical implicit volume modeling frameworks such as
the BlobTree [Wyvill et al. 1999], complex implicit models can be
constructed by iteratively composing simpler volumes using solid
modeling operations such as CSG and blending. A recent spatial
caching technique for the BlobTree [Schmidt et al. 2005a] supports
interactive modeling of complex implicit models.

Sweep surfaces, nearly ubiquitous in parametric modeling for the
last 20 years [Requicha 1980], are a useful interactive modeling
metaphor. However, sweep surface methods are very limited in the
implicit domain [Bloomenthal 1997]. Existing implicit sweep rep-
resentations compatible with the BlobTree are limited to star-shape
sweep profiles defined by offset curves [Crespin et al. 1996]. Im-
plicit sweep techniques that support the intuitive direct profile ma-
nipulation available in the parametric domain have not been previ-
ously developed for the BlobTree.

One of the key problems regarding implicit sweeps is the definition
of a suitable 2D sweep template scalar field. The global proper-
ties of the scalar field must be considered. The BlobTree requires
bounded scalar fields which have compact support. Gradient dis-
continuities in the field away from the surface must be avoided to
prevent blending artifacts. Even when these conditions are met,
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the scalar field may still have subtle undesirable properties that can
have a significant impact on blending [Barthe et al. 2003].

We describe a technique for generating 2D sweep template fields
that can be used to create sweep volumes which have good blend-
ing properties and are compatible with the BlobTree (Section 3).
First, we describe a simple technique for converting distance fields
to bounded fields, allowing any set of closed 2D contours, includ-
ing “holes”, to be used to create the implicit sweep template. We
then extend variational curve-fitting techniques to create a distance

field approximation which is C2 away from the surface, providing
good blending properties, but preserves creases in the sweep tem-
plate contour.

Our approach to 3D sweeps largely follows classical methods (Sec-
tion 4). One issue which has not been previously discussed is the
generation of flat sweep endcaps. We integrate a CSG intersection
operation, based on the sweep trajectory parameter space, to create
flat endcaps.

The goal of our sweep formulation is to create implicit sweep vol-
umes compatible with the BlobTree. Within this framework, im-
plicit sweeps can be composed with other implicit volumes (in-
cluding other implicit sweeps). We have implemented these sweep
primitives in an interactive BlobTree modeling environment and
found them very useful for implicit solid modeling (Section 5).
In interactive contexts, the ability to directly manipulate the sur-
face contour is much more efficient than the previous offset-contour
methods. The interaction techniques developed for parametric
sweeps can be used without modification. Combined with their
good blending behavior, our sweep primitives are an intuitive and
expressive free-form addition to BlobTree modeling.

2 Related work

2.1 Hierarchical implicit volume modeling

Given a continuous scalar function f : R
3 → R+, we can define a

volume V:

V =
{

p ∈ R
3

: f (p) ≥ viso

}
(1)

where viso is called the iso-value. We call V an implicit volume.
The surface S of this volume is defined by replacing the inequality
in Equation 1 with an equality. This surface is referred to as an
implicit surface [Bloomenthal 1997]. This definition also applies in
2D, where S is a contour and V is the enclosed area.

Two implicit volumes, defined by scalar functions f1 and f2, can
be combined functionally using a composition operator G( f1, f2) ∈
R+. Since G is also a scalar function, composition operators can
be applied recursively. A variety of operators are available for per-
forming Computational Solid Geometry (CSG), blending, space de-
formation, and more [Bloomenthal 1997].

Recursive application of composition operators results in a tree-like
data structure with implicit volumes (primitives) at the leaves and
composition operators at tree nodes. The final scalar field is eval-
uated at the root composition operator, which recursively evaluates
its children, and so on. Using this framework, complex volumes



Figure 1: Scalar fields generated from contour (a), with sin function applied before mapping to grayscale to emphasize iso-contours. Red

highlight indicates region inside contour, blue highlight indicates bounded region after applying Equation 3. Exact distance field (b) has C1

discontinuities inside contour. Variational approximation (c) using normal constraints provides a poor approximation to (b). Approximation

with a C1 implicit polygon (d) is sensitive to the tessellation of the curve, field values grow as tessellation level is increased. A normalized
implicit polygon (e) is accurate near the contour, but the iso-contours quickly tend to a circular shape. Our variational approximation with

boundary constraints (f) closely approximates (b) inside the falloff region but is globally C2 continuous.

can be incrementally constructed from simple components. This
type of procedurally-defined hierarchical implicit volume model is
often called a BlobTree [Wyvill et al. 1999].

A variety of benefits can be gained by requiring the scalar functions

f which define volume primitives to be bounded 1. A scalar field f
is bounded if f = 0 outside some finite bounding volume. Opera-
tors G must also produce bounded fields. Bounded fields guarantee
local influence, preventing changes made to a small part of a com-
plex model from affecting distant portions of the surface. Local
influence preserves a “principle of least surprise” that is critical for
interactive modeling. Bounded scalar fields also reduce the cost of
evaluating the BlobTree, since the field bounds at each node can
be used to cull evaluations outside the non-zero region. In addi-
tion, bounded scalar fields are a pre-requisite for Hierarchical Spa-
tial Caching [Schmidt et al. 2005a]. This approximation technique
provides an order-of-magnitude reduction in visualization time, al-
lowing complex hierarchical implicit volume models to be manip-
ulated in real-time in interactive systems.

One type of implicit volume primitive with a bounded scalar field is
the skeletal primitive [Bloomenthal and Wyvill 1990], defined by a
geometric skeleton E (such as a point or line) and a one-dimensional
function g : R+ → R+. The scalar function f is then:

fE,g(p) = g◦dE(p) (2)

where dE is a function that computes the minimum Euclidean dis-
tance from p to E. The shape of a skeletal primitive is primarily de-

1We use the term bounded [Barthe et al. 2003], rather than compact

support, in an attempt to draw an analogy to the concept of bounding boxes

that is ubiquitous in computer graphics.

termined by E. We use the following function for g [Wyvill 2005]:

gw(x) = (1− x
2)3

(3)

where x is clamped to the range [0,1]. This polynomial smoothly
decreases from 1 to 0 over the valid range, with zero tangents at
each end. We choose 0.5 as the iso-value viso.

Finally we consider field continuity. At minimum, all scalar fields

f must be C0 continuous (implying that operators must preserve C0

continuity). Under this condition it is impossible to create a scalar

field that does not define a valid surface. C1 (gradient) continuity is
desirable because the gradient of the scalar field is used to calculate

surface normals. C1 discontinuities in the scalar field can result in
the appearance of unexpected creases in blend surfaces (Figure 3).

2.2 Implicit sweep surfaces

Solid modeling by sweeping a 2D area (commonly referred to as
a sweep template) along a 3D trajectory is a well known tech-
nique in computer graphics [Requicha 1980] [Foley et al. 1993].
Most early CAD systems [Requicha and Voelcker 1982] supported
sweep surfaces as boundary representations (B-reps). These B-
rep sweep solids lacked a robust mathematical foundation, self-
intersecting sweeps were simply invalid. Recent work on the more
general problem of sweeping a 3D volume has produced several
general swept-volume envelope computation techniques which em-
ploy either the sweep-envelope differential equation [Blackmore
et al. 1997] or Jacobian rank-deficiency conditions [Abdel-Malek
and Yeh 1997]. Applications of these techniques are explored in a
recent survey [Abdel-Malek et al. 2000a]. These methods operate



Figure 2: Scalar fields generated using a non-convex curve (a). The exact distance field (b) has C1 discontinuities inside and outside
the curve. Approximation with a normalized implicit polygon (c) and variational approximation with normal constraints (d) provide poor
approximations in concave region. Our approach (e) smoothly approximates the distance field away from the surface.

on closed-form boundary representations which are symbolically
manipulated. The volume boundaries can be defined using closed-
form implicit surfaces [Abdel-Malek et al. 2000b]. However, the
resulting swept volume is still a boundary representation, and not an
implicit volume defined such as in Equation 1. [Sourin and Pasko
1996] describe a technique for sweeping implicit volumes. Eval-
uating the resulting function requires slow non-linear optimization
algorithms.

There are essentially two approaches to creating implicit sweep sur-
faces. One method is to convert the 2D sweep template to a 2D
scalar field, and then sweep this scalar field in 3D. Alternatively, a
discretization of a 3D parametric sweep surface (such as a triangle
mesh or point set) can be approximated with an implicit represen-
tation.

Creating an implicit representation of an arbitrary 3D surface is
non-trivial. Some success in this domain has been achieved us-
ing scattered-data interpolation techniques, where an implicit sur-
face is defined that passes through a set of 3D sample points.
One approach, variational implicit surfaces [Turk and O’Brien
1999] [Savchenko et al. 1995], involves solving a dense matrix and
hence does not scale to more than a few thousand sample points
- insufficient to adequately represent a complex sweep surface.
The cost of solving the linear system can be greatly reduced us-
ing Fast Multipole Methods, permitting millions of sample points
to be used [Carr et al. 2001]. Unfortunately the multipole expan-
sions necessary to implement this technique were not provided in
[Carr et al. 2001] and have not been published. This algorithm is
only available commercially, so we do not consider it an alternative.
In addition, these approximation techniques cannot represent sharp
creases or points, since the variational implicit surface is globally

C2 continous. Interpolation of point values is generalized in the
concept of transfinite interpolation [Rvachev et al. 2001], which
can interpolate arbitrary geometric curves and preserves disconti-
nuities. However, this technique has only been demonstrated for a
restricted set of closed-form 2D implicit contours.

Another class of scattered-data interpolation techniques have been
developed that employ basis functions with local support [Morse
et al. 2001]. The underlying linear systems are sparse and hence
more efficient to solve. Partition of unity techniques such as MPU
implicit surfaces [Ohtake et al. 2003] and the Partition of Unity
Variational method [Reuter 2003] apply hierarchical approximation
techniques to simplify surface fitting and can represent sharp fea-
tures in certain configurations. However, these techniques are not
guaranteed to define an implicit volume (Equation 1). Additional
internal iso-surfaces may be produced as a result of blending local
approximations with finite support [Reuter 2003]. Volume model-
ing operations such as CSG may expose these internal iso-surfaces.

The Implicit Moving-Least-Squares (IMLS) technique [Shen et al.
2004] converts triangle meshes into implicit volumes and hence
could be used to define implicit sweep surfaces. However, the im-
plicit surface interpolates the tessellation - the differential proper-
ties of the sweep template are lost, local curvature is always zero
(or infinite on the creases between each triangle), and an adequate
tessellation level must be determined.

[Sealy and Wyvill 1997] and [Winter and Chen 2002] approximate
sweep surfaces with volume datasets. The sweep dataset is initial-
ized by sampling a sweep template specified as a 2D image. Volume
datasets cannot represent features smaller than a single voxel. Sur-
face creases and sharp points are also lost in the conversion process.
Adaptively-Sampled Distance Fields (ADFs) [Frisken et al. 2000]

attempt to deal with these issues, but contain C1 discontinuities in
the reconstructed scalar field.

Implicit sweeps can alternatively be defined by following the para-
metric approach of sweeping a 2D template. One key issue is the
definition of a suitable implicit template. A 2D scalar field must be
defined that represents the closed 2D template contours. This scalar
field is then swept along the sweep trajectory.

[Crespin et al. 1996] describes implicit sweep primitives with
bounded sweep template fields. Profile curves defined in polar co-
ordinates are used to create an anisotropic distance field. The sweep
surface is an offset surface from the swept profile curve, prohibit-
ing direct surface specification. Profile curves are limited to “star-
shapes” by the polar definition. [Grimm 1999] describes implicit
generalized cylinders which have a similar limitation.

Figure 3: An implicit sphere is blended with an L-shaped sweep
primitive. A sweep template based on an exact distance field, which

contains a C1 discontinuity equidistant from the two flat surfaces,
is swept in (a) and results in a crease on the blend surface. A sweep
template created with our method is used in (b) and produces a
smooth blend surface.



Another approach is to approximate the contour with a polygon,
and then construct an implicit representation of the polygon [Pasko
et al. 1996b] [Barthe et al. 2003]. These methods require that non-
convex polygons be carefully decomposed into pieces that can be
properly combined using CSG intersection operations. This decom-
position is non-trivial. The properties of the resulting scalar field
are dependent on the tessellation level (Figure 1d). These issues
can be mitigated using explicit normalization techniques [Biswas
and Shapiro 2004]. A side-effect of this normalization is that offset
iso-contours quickly converge to a circle (Figure 1e). While Huy-
gen’s Principle guarantees that all distance fields will converge to
circular iso-contours in the limit, in this case it happens quickly and
has an undesirable effect on blending.

A swept 2D implicit polygon results in a faceted 3D sweep sur-
face. Curvature at the surface is not preserved, and gradient dis-
continuities exist along the sweep paths of each vertex in the 2D
polygon. The 2D polygon can be smoothed at the vertices [Pasko
et al. 1996b]. However, this “corner-cutting” reduces the accuracy
of the approximation as the surface no longer passes through the
accurate surface samples (the polygon vertices). An implicit rep-
resentation of 2D curves has been described [Pasko et al. 1996a],
but is based on an underlying “carrier polygon” that has only been
developed for cubic polynomial splines. Variational interpolation
can also be applied to approximate a 2D contour [Yngve and Turk
2002]. The standard technique involves constraining the variational
solution only near the contour, the rest of the field is unconstrained
and hence determining bounds is very difficult (Figure 1c).

2D implicit curves can be represented using level set tech-
niques [Osher and Fedkiw 2002]. These algorithms are based on
2D pixel discretizations, and hence have the same issues as volume
datasets regarding small and sharp features. Skeletonization tech-
niques such as Medial Axis Transform [Blum 1967] can be used to
compute distance fields which approximate curves but also contain

C1 discontinuities.

To summarize, several implicit sweep models have been proposed
that support direct surface specification and manipulation. How-
ever, none of these models produce the bounded scalar fields neces-
sary for interactive modeling of complex hierarchical implicit mod-
els [Wyvill et al. 1999] [Schmidt et al. 2005a].

3 2D implicit sweep templates

In our sweep formulation, and in hierarchical implicit modeling in
general, the behavior of blending surfaces is largely determined by
the global properties of the underlying scalar fields. For example,
in Figure 3, two volumes are blended. In both cases the volumes are
identical but the underlying scalar fields are different. One, based

on a distance field, contains C1 discontinuities in the scalar field
away from the surface but inside the blending region, resulting in a
crease on the blending surface [Barthe et al. 2003]. The other scalar
field, created with our method, is continuous and blends smoothly.

In the following section we develop a 2D implicit sweep template
that represents a closed 2D contour C. First, we describe a tech-
nique for converting the distance field dC to a bounded 2D field.
This simple method allows BlobTree-compatible implicit sweep
surfaces to be generated from any set of closed 2D contours. We

then describe a method for creating a smooth approximation d̃C
to the exact distance field dC which does not contain undesirable

C1 discontinuities.. This approximation technique, which extends
existing work on approximating curves with variational interpola-
tion [Turk and O’Brien 1999], cannot reproduce sharp edges in C.

Hence, we describe a technique for re-introducing sharp edges into
the sweep template, followed by a comparison of the distance field
approximation with existing methods.

3.1 Bounding distance fields

In the parametric domain a sweep surface is generated by sweeping
a 2D template curve C along a 3D trajectory T . In the implicit do-
main, we must create a 2D template scalar field fC that represents
C. Since we are creating 3D volumes, C must be a closed contour.
Also, fC should be bounded and continuous if the scalar field cre-
ated by sweeping fC is to be used in the BlobTree.

The approach used to create skeletal primitives (Section 2.1) - ap-
plying gw to a distance field - can be adapted to create the sweep
template field fC . However, in the distance field dC the curve lies
on the zero iso-contour, dC = 0. If gw is applied directly to dC , the
viso iso-contour in the bounded field will be offset from C. To force
this contour to lie on C the distance values must be shifted. We
assume that dC is signed, where a negative distance value indicates
that the point is inside C. The shifted distance d′

C is then:

d
′
C = min(g−1

w (viso)+dC ,0) (4)

The bounded 2D sweep template field fC is then defined as

fC = gw ◦d
′
C (5)

This technique produces a scalar field which contains C1 disconti-
nuities (Figure 2a). As noted, these discontinuities will be swept in
3D and produce undesirable blending artifacts (Figure 3a). Hence
it is necessary to develop an approximation to dC that has a smooth
field away from the surface.

3.2 C2 distance field approximation

An implicit approximation to a 2D contour C can be created using

variational interpolation [Turk and O’Brien 1999]. A C2 interpo-
lating thin-plate spline is fit to a set of constraint points placed at
samples of C. To adequately constrain the solution, normal con-
straints [Carr et al. 2001] [Yngve and Turk 2002] are added. Inner
and outer normal constraints at a sample point are added at short
distances along the normal to C at the on-curve sample (Figure 4a).

Normal constraints only ensure that the iso-contour passes through
the sample points. The scalar field is unconstrained further from
the surface, resulting in a poor approximation to the distance field
(particularly in the case of non-convex C, see Figure 2). In our case
this is especially problematic because it is non-trivial to determine
the bounds of the non-zero field values (after applying gw) without
resorting to a time-consuming spatial search.

Variational approximation produces an implicit curve, rather than
polygon. Since only sample points are necessary, there are no re-
strictions on C. However, normal constraints are insufficient to pro-
duce a variational solution which approximates a distance field. Our
approach is to add boundary constraints that constrain the varia-
tional solution in regions further from the curve (Figure 4b).

Boundary constraint points are generated by sampling several iso-
contours of the distance field. A reasonable distance field approxi-
mation can be obtained using one set of boundary constraints along

the contour found at a distance of g−1
w (0). After applying gw, this

contour bounds the non-zero field values, and hence can be used to
determine a bounding box. We also use two additional iso-contour



Figure 4: Normal constraints (a) at a point ci are added at short
offset M s from the curve C, along the curve normal ni. Bound-
ary constraints (b) are placed at a constant distance from C to im-
prove the distance field approximation and ensure that the field fC
is bounded within a known distance.

constraints, one at g−1
w (0.5∗ viso), which is approximately half-

way between C and the zero-contour, and another at g−1
w (1.5∗ viso),

which lies inside C. The purpose of these extra constraints is to re-
duce error in the distance field approximation.

If C has high-frequency features, there may be higher error in the
distance field approximation close to the curve. In implicit sweep
applications, this error is not particularly critical. However, the sit-
uation can be identified automatically by comparing approximated
distance values with exact distance values at small offsets from C.
If the measured error is unacceptable, additional sets of iso-contour
constraints close to C can be inserted to further reduce approxima-
tion error.

Tracing iso-contours in the exact distance field dC is non-trivial and
computationally expensive. Instead we sample the iso-contour us-
ing a distance transform [Jain 1989] which approximates dC on a
discrete grid. We use the CSSED algorithm which runs in linear
time in the number of image pixels [Cuisenaire and Macq 1999].

The distance transform is computed on a 5122 pixel image and then
discrete iso-contours are traced in the image. The resolution here is

not critical, similar results have been found with 1282 pixel images.

We have experimented with alternatives to this iso-contour-
sampling constraint technique and found them lacking. Since the
variational solution minimizes global curvature, constraints based
on either random or regular sampling can result in unexpected os-
cillations. In addition, regular sampling introduces many spurious
constraint points and if the sampling frequency is too high the dis-
continuities in the distance field are closely approximated. When
these high-frequency areas are blended, perceptual discontinuities
similar to those in Figure 3a can occur.

Adding boundary constraints to the variational solution results in
a much more accurate approximation to the distance field, particu-
larly in the case of non-convex curves (Figure 2). The variational

scalar field is a globally C2 continuous approximation to dC . The
approximation accuracy can be improved by increasing the sam-
pling rates used to generate constraint points.

3.3 Sharp features

The variational approximation to C is globally C2 continuous. This

implies that sharp features, which are C1 discontinuities in C, are
not preserved in the variational approximation. Significant smooth-
ing can be observed near creases, even with high sampling rates
(Figure 5a). Crease approximation can be improved by using

Figure 5: The boundary-constrained variational method described

in section 3.2 rounds out sharp edges (a) because it is globally C2

continuous. Sharp features can be re-introduced (b) by blending
between an implicit polygon and the variational field in the feature
regions (see section 3.3).

anisotropic basis functions [Dinh et al. 2001] but these basis func-

tions do not create sharp C1 discontinuities. Sharp features are
preserved with implicit polygon techniques [Biswas and Shapiro
2004] [Barthe et al. 2003]. To introduce sharp features into our for-
mulation, we take a constructive approach based on these existing
techniques. We compute both our smooth distance field approxi-

mation d̃C and a crease-preserving approximation d̂C . These fields
are then blended in sharp feature regions.

We assume that a set of crease positions ci are given, as is a feature
radius ri. When evaluating fC at a 2D point u, we compute the
distance k from u to the nearest feature point. The blended distance
field approximation d?

C is then defined as follows:

d
?
C =





d̃C if k ≤ r

(1−gw( k
r ))d̃C +gw( k

r )d̂C if r < k < 2r

d̂C if k ≥ 2r

(6)

See Figure 6 for a graphical representation of the blending re-
gions. The use of gw here is not significant, any smooth interpo-
lating function can be used. This method is similar to the bounded-
blending techniques used to control implicit volume composition
operators [Pasko et al. 2002] [Galbraith et al. 2004]. An example is
shown in Figure 5.

In our implementation we use the normalized implicit polygon ap-
proach [Biswas and Shapiro 2004] to define the crease-preserving

field d̂C . The necessary equations are described in Appendix B.
To locate crease points on C we use the rudimentary method of
thresholding the angles between consecutive line segments in the
polygonal approximation. This technique is not robust but works
reasonably well.

This blending approach provides the benefits of boundary-
constrained variational approximation while also locally preserving
sharp features. Since our method provides a more accurate distance
field approximation (Figure 1), it is beneficial even when the input
contour is not curved. However, there are some drawbacks. In the
blending regions around feature points the scalar field may not be
monotonic, since the two fields being combined can be increasing at
different rates. As previously noted, curvature in the feature region
is not preserved by the polygonal approximation.

3.4 Analysis

A variety of implicit representations for general 2D curves have
been developed (Section 2.2). The scalar fields generated by some



Figure 6: A scalar field d̂C that preserves sharp features in C can

be combined with our smooth approximation d̃C . Within a distance

r from the sharp feature, d̂C is used. Outside the radius 2r, d̃C is

used. Between r and 2r (dashed circles in diagram), d̃C and d̂C are
smoothly blended.

of these techniques are compared in Figures 1 and 2. In both of
these examples it is clear that our technique more closely approxi-
mates a distance field than existing methods. Close approximation
to a distance field is desirable because it allows easy computation
of field bounds and results in more predictable blending behavior.
The technique used to generate Figure 1d, for example, is sensi-
tive to the tessellation level of the curve. If the tessellation level
is increased, the iso-contour spacing will change and hence blend
surfaces will also change. This is unacceptable. The normalized
polygon approach [Biswas and Shapiro 2004] does not have this
problem; however, the iso-contours produced approach a circular
shape very quickly (Figure 2c). This results in undesirable blending
behavior (Figure 7). In both of these cases, the scalar field repre-
sents a polygon, not a curve. The curvature of the input contour C
is lost, and hence the differential surface properties of the implicit
sweep do not reflect those that would be computed with a para-
metric sweep. Although it is still an approximation, our variational
technique produces a curve and hence approximates the curvature
of the accurate sweep surface.

Figure 7: Implicit sweep blended with cylinder. Sweep template is
computed using normalized implicit polygon in (a), and our tech-
nique in (b). Black line shows edge of non-blended cylinder, dashed
red line in (b) shows outline of (a). Blending in (b) is more localized
and has a softer transition.

Defining “goodness” measures for distance field approximation is
challenging. One test is to compare the approximated field values
with the exact distance field values. However, since we do not wish
to reproduce the discontinuities found in distance fields, zero er-
ror is in fact undesirable. Still, we have performed this test with a

variety of convex and non-convex curves, and found that, on aver-
age, our technique reduces the mean error by a factor of 25 over the
normalized implicit polygon approach.

One characteristic of distance fields is that the magnitude of the
gradient at all points is one (except along the discontinuity curves).
This is related to the concept of normalization [Biswas and Shapiro
2004]. Again, if the goal is to smooth discontinuities in a distance
field, minimizing the gradient magnitude error |1−|∇ f || is unde-

sirable as it will produce high-frequency C2 regions that are effec-
tively “perceptual” discontinuities. However, we have compared
our technique with the implicit polygon approach and found that it
reduces the mean gradient error by a factor of 4.

Visually inspecting the gradient error map is instructive. Our tech-
nique is compared with the implicit polygon approach in Figure 8
by mapping the error values to grayscale. We see that in both cases
the error is highest along what would be discontinuities in the exact
distance field (inside C, the discontinuities lie on the medial axis).
In the implicit polygon approach (Figure 8a), the error is very low
near C but increases rapidly away from the curve. Our approach
has somewhat higher error near C but is much more accurate in the
bounded approximation region further from the curve.

Figure 8: Gradient images computed by mapping |1−|∇ f || to
grayscale (white is maximum error). Normalized implicit polygon
(a) has low error near surface, but higher error than our technique
(b) in regions further from the surface.

4 Sweep primitives

An implicit sweep primitive is defined by a 2D sweep template field
fC (Equation 5) and a 3D sweep trajectory T . We will assume that
T is a parametric function:

T (s) = (tx(s), ty(s), tz(s)), 0 ≤ s ≤ 1

The sweep surface S is defined by a 3D scalar field fS . Given
a point T (s) on the sweep trajectory, we can define a geometric
transformation F(s) that maps 2D points u to 3D points p. We
assume that F(s) is affine and maps the 2D origin to T (s), implying
that points F(s) ·u are co-planar (Figure 9a).

A possible definition for fS is:

fS(p) = fC(u), F(s) ·u = p (7)

Unfortunately, given only a point p we cannot directly evaluate this
equation because the parameter value s and 2D point u are un-

known. Since F(s) is affine the inverse mapping F−1(s) is:

fS(p) = fC(u), u = F
−1(s) ·p (8)



However, s is still unknown, and not necessarily unique (Figure 9).

F(s) transforms the 2D plane into some 3D plane passing through
T (s) with normal n(s) (Figure 9). Since there may be more than
one plane that passes through p (Figure 9b), there exists a set of
parameter values S(p) = si such that p lies in the plane at si:

S(p) = {si : (p−T (s)) ·n(s) = 0} (9)

To compute the field value fS(p), Equation 8 is evaluated for each
parameter value si ∈ S(p). The resulting field values are combined
with a composition operator G, such as a CSG union operator [Ricci
1973], to produce a single field value. The final definition:

fS(p) = G
( {

fC( F
−1(si) ·p ) : si ∈ S(p)

} )
(10)

can be evaluated for any trajectory where the parameter set S(p) is
computable.

Figure 9: Forward and inverse mapping (a) from sweep template
field fC to 3D space. Function F(s) maps a 2D point u to a 3D
point p lying in plane defined by T (s) and n(s). The inverse map

F−1(s) maps from p to u. In (b), Point p lies on the planes at points

T (s1) and T (s2). A unique inverse mapping F−1(s) does not exist.

4.1 Sweep trajectories

Analytically solving Equation 10 for linear and circular trajectories
is trivial [Winter and Chen 2002]. However, in the case of a general
curved trajectory T (s), a closed-form solution is rarely possible.
Assuming that the normal function n(s) (Equation 9) is the tangent
vector T ′(s), then the roots of the following equation must be found
to compute the parameter value set S(p):

(p−T (s)) · T ′(s) = 0 (11)

For quadratic parametric curves such as a quadratic Bezier curve,
this equation is a degree 3 polynomial which can be solved. How-
ever, these curves are planar and hence quite limited. The polyno-
mial is degree 5 for cubic Bezier curves, precluding analytic solu-
tion. Numerical root-finding techniques [Schneider 1990] must be
used to solve for the roots s.

Once S(p) is computed we can evaluate F−1
T (s):

F
−1
T (s) = Rot

[
k1 k2 T ′(s)

]
·Tr

[
−T (s)

]

Care needs be taken when defining the vectors k1 and k2. Rotation-
minimizing frames [Bloomenthal 1990] are suitable but cannot be
computed analytically at an arbitrary parameter s. Instead we pre-
compute a set of rotation-minimized frames along the curve at pa-
rameter values s j, and then calculate the rotation-minimized frame
at an arbitrary s based on the nearest stored frame at s j < s. This
technique is known as Bishop framing [Bishop 1975].

Figure 10: Flat endcap with sharp transition. C1 discontinuity on
surface produces sharp crease (left) but does not propagate away
from the surface with Barthe CSG intersection (middle). Ricci in-

tersection produces C1 discontinuity away from surface (right). Iso-
contour is marked in red.

4.2 Endcaps

Open trajectories must be explicitly capped to ensure that a closed
volume is defined. In previous works, sweeps were capped by in-
terpolating the field to zero. This produces a variable-width endcap
which may be undesirable. In theory, a flat endcap can be achieved
in these systems by applying a CSG difference operation with a
primitive such as an infinite plane or cube. However, there are many
cases where it is likely that the CSG operation will have undesirable
effects on other portions of the sweep. For instance, in Figure 11b
it would be extremely difficult to define CSG operations that pro-
duced flat endcaps, if the endcaps were rounded.

We create flat endcaps by integrating a CSG intersection into the
sweep formulation in parameter space. During each field evalu-
ation, a CSG intersection with an infinite plane is applied to the
computed field values. The field value for the infinite plane is not
determined using the 3D position p but instead the parameter s.
When s lies outside the range used to define the curve (typically
[0,1]), then p is “outside” the infinite plane, otherwise it is inside.

We use a CSG intersection operator that preserves C1 continuity in
the field away from the surface [Barthe et al. 2003], instead of the

standard min/max CSG operations [Ricci 1973] which create C1

discontinuities (Figure 10).

4.3 Self intersection

A key problem with sweep surfaces is that they are frequently self-
intersecting (Figure 11). In the B-rep domain self-intersection is a
critical problem [Requicha and Voelcker 1982], since the definition
of ’inside’ and ’outside’ is often based on the sweep surface and
hence is ambiguous inside self-intersections. These problems are
not an issue in volumetric implicit modeling. Since a point in space
has only one field value, there is no ambiguity as to whether or not
it lies inside the volume.

Figure 11: Self intersection can occur near high-curvature regions
of the sweep trajectory (a) as well as in overlapping regions (b),
(c). Cutaway mesh in (d) shows manifold surface.

The behavior of volumetric implicit sweeps in self-intersecting
cases is entirely determined by the operator G (Equation 10). G



should be applied to all field values produced with the solutions to
Equation 11, as well as the endcap field values. The CSG Union
operator of [Ricci 1973] can be used as G. This produces a closed
manifold surface but also gradient discontinuities in the scalar field

(Figure 12). A C1 continuous CSG union operator [Barthe et al.
2005] can be used to preserve both the surface creases and gradient
continuity in the field away from the surface. Using this formula-
tion, self-intersections are automatically handled. The final implicit
volume is always defined as the outermost surface of the sweep.

Figure 12: Bezier curve sweeps. Holes in template are supported

(left). Scalar field in self-intersecting cases (middle) is C1 contin-
uous using Barthe CSG union operator (right top). Ricci union

operator produces C1 discontinuities (right bottom).

5 Modeling with sweeps

While a wide variety of volume primitives have been developed
for hierarchical implicit volume modeling with BlobTrees, most
are based on the skeletal primitive approach. Even with free-form
skeletons, the user must model indirectly, manipulating an offset
surface by changing the skeleton. The volumetric implicit sweep
formulation we have presented allows the sweep profile to be di-
rectly specified, providing a useful free-form primitive for the Blob-
Tree.

Visualizing BlobTree models is computationally expensive, and
hence BlobTree modeling systems in the past have largely been off-
line, script-based systems. A recently-developed hierarchical spa-
tial caching scheme [Schmidt et al. 2005a] allows BlobTree mod-
eling to be performed interactively. We have implemented our im-
plicit sweep primitives in this interactive system and found them
extremely useful for implicit modeling. In an interactive context,
the ability to directly specify the sweep profile can significantly re-
duce the time required to model a shape, since the trial-and-error
involved with indirect manipulation is unnecessary. Our sweep sur-
faces, combined with interactive blending and CSG, can be used to
quickly create complex 3D models (Figure 13).

We have used an earlier version of this sweep formulation to de-
velop a linear sweep with rounded, variable-width endcaps. This
primitive forms the basis of an interactive sketch-based BlobTree
modeling tool [Schmidt et al. 2005b]. The more accurate distance
field approximation presented here significantly improves blending
control in this system. Figure 14b was created in this system by
sketching linear sweeps and surfaces of revolution.

To visualize sweep surfaces in an interactive context, we approxi-
mate fC with a discrete field image. This significantly reduces the
computational expense of evaluating the scalar field for a sweep
primitive. The approximation error that is introduced is acceptable
for interactive visualization. More details can be found in an exist-
ing technical report [Schmidt and Wyvill 2005].

6 Conclusion

We have described techniques for generating 3D implicit sweep
volumes that are compatible with the BlobTree hierarchical model-
ing system. Our main contribution is the development of a method
for converting a 2D sweep template contour C (or set of contours,
including “holes”) into a bounded, continuous 2D scalar field which
is used as an implicit sweep template. First, a general technique for
converting 2D distance fields to bounded 2D scalar fields was pre-
sented. This was followed by the addition of boundary constraints
to existing variational curve approximation techniques, which re-

sulted in a C2 distance field approximation. A constructive field-
blending approach was described which preserves sharp features
in the sweep template. Our approach to sweeping the 2D sweep
template field largely follows existing methods, although the inte-
gration of flat endcaps into the sweep formulation is a necessary
detail that has not been previously discussed.

Compatibility with BlobTree hierarchical implicit modeling is a key
benefit of our sweep volumes. Existing BlobTree-compatible im-
plicit sweeps [Crespin et al. 1996] required indirect sweep profile
specification using offset contours. Other implicit sweep formula-
tions which support direct profile specification are not usable with
the BlobTree because they lack the necessary scalar field proper-
ties. Our sweep formulation combines the desirable attributes of
these previous approaches. The BlobTree provides a rich infrastruc-
ture for shape modeling by procedural composition of implicit vol-
umes, but has generally lacked free-form primitives that support di-
rect surface specification. Particularly in an interactive context, our
method provides an expressive, intuitive free-form primitive for the
BlobTree. Complex shapes such as the set of pipes in Figure 14a
can be quickly created by blending multiple sweep surfaces.

Preliminary analysis of our smooth distance field approximation
has shown that it is significantly more accurate than existing tech-
niques in regions away from the curve. For implicit sweeps, this is
beneficial because blending behavior is more predictable and it is
possible to determine a bounding box for the bounded scalar field
without resorting to expensive spatial searching. Distance fields
are used in many other applications, and some situations where a
smooth distance field approximation may be desirable have been
identified [Biswas and Shapiro 2004]. Further study of the proper-
ties of our distance field approximation is warranted to determine if
it can be applied in these cases.

A limitation of the sweep technique we have described is that nu-
merical root-finding is usually necessary in the case of curved tra-
jectories. Root finding is expensive and requires an analytic expres-

Figure 13: Space shuttle model created by blending implicit sweeps
and revolutions. This model was created in under an hour using our
interactive system.



sion for the curve tangent to function robustly. A key avenue for
future work is a more general implicit sweep formulation that does
not rely on root-finding. Since we are working in a volumetric con-
text, a constructive approach based on approximation by union of
linear segments can be employed. However, this technique breaks
down in regions with high curvature. Approximation by union of
simpler curved segments could provide superior results.

Figure 14: Components of an engine modeled interactively using
implicit sweep surfaces. Complex branching structures (a) can be
created quickly by blending implicit sweeps. Hierarchical implicit
CSG operations preserve sharp edges (b) and allow model compo-
nents (including holes) to be easily manipulated or deleted.
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Appendix A Variational Implicit Curves

One useful technique for generating a 2D scalar field is to interpo-
late a set of 2D field value samples (mi,vi), where vi is the desired
field value at point mi. We use a variational interpolation scheme

based on thin-plate splines which is globally C2 continuous. This
scattered data interpolation technique has been used define implicit
curves and surfaces [Turk and O’Brien 1999].

The thin-plate spline f (u) is defined in terms of points (mi,vi)
weighted by coefficients wi, and a polynomial P(u) = c1ux +
c2uy + c3:

f (u) = ∑wi‖u−mi‖
2

ln(‖u−mi‖)+P(u) (12)

The weights wi and coefficients c1, c2, and c3 are found by solving a
linear system defined by evaluating Equation 12 at each known so-
lution f (mi) = vi. These coefficients determine a variational solu-
tion which is guaranteed to interpolate all sample points (vi,vi) with

C2 continuity while minimizing global curvature [Duchon 1977].

Appendix B Normalized Implicit Polygons

A 2D closed contour C can be represented by an implicit polygon
defined using the following approach (reproduced from [Biswas
and Shapiro 2004]). First, C is approximated with a set of
line segments. Then for a segment ((x1,y1),(x2,y2)), with d =√

(x2 − x1)2 +(y2 − y1)2, a scalar field can be defined:

f (x,y) =
1

d
((x− x1)(y2 − y1)− (y− y1)(x2 − x1)) (13)

A circular scalar field is also defined for the line segment:

t(x,y) =
1

d

[(
d

2

)2

− (x−
x1 + x2

2
)2 − (y−

y1 + y2

2
)2

]
(14)

This circular field is used to normalize the line segment field, defin-
ing a new scalar field h:

h =
√

f 2 +0.25∗ (|t|− t)2 (15)

These normalized line segments are then combined using the R-
conjunction operator:

F(h1,h2) = h1 +h2 −
√

h2
1 +h2

2 (16)

The resulting field is unsigned, but since C is closed a polygon
point-containment test can be used to determine whether a distance
value should be positive or negative.


