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Abstract

We present a system for creating and manipulating layered procedural surface editing operations, which is mo-
tivated by the limited support for iterative design in free-form modeling. A combination of sketch-based and tra-
ditional modeling tools are used to design soft displacements, sharp creases, extrusions along 3D paths, and
topological holes and handles. Using local parameterizations, these edits are combined in a dynamic hierarchy,
enabling procedural operations like linked copy-and-paste and drag-and-drop layer-based editing. Such dynamic,
layered “surface compositing” is formalized as a Surface Tree, an analog of CSG trees which generalizes previ-
ous hierarchical surface modeling techniques. By “anchoring” tree nodes in the parameter space of lower layers,
our surface tree implementation can better preserve the semantics of an edit as the underlying surface changes.
Details of our implementation are described, including an efficient procedural mesh data structure.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling

1. Introduction

Creating 3D models is a notoriously difficult task, in part
because 3D modeling interfaces are so complex. One of the
goals underlying much of the research in shape modeling is
to make creating models more efficient. Although 3D design
is largely a process of trial-and-error, most tools operate un-
der the assumption that the designer will carry out editing
operations sequentially. Operation n can be tweaked indef-
initely, but becomes immutable once operation n + 1 is ini-
tialized. “Undo” allows operation n to be modified, but only
by discarding all following operations. This workflow results
in much repeated work during design iterations.

Procedural modeling interfaces such as the ShapeShop
system [SWSJ05] support a more efficient workflow by al-
lowing the designer to “go back in time” and directly mod-
ify any offending editing operation. However, we have found
that 3D artists use ShapeShop only to create coarse models,
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and prefer to add detail by exporting static meshes to tradi-
tional surface deformation tools. As a result, all the benefits
of the procedural representation are lost. The system we de-
scribe here is motivated by the desire to support the direct
surface editing tools that artists demand, in a procedural in-
terface. Recent works such as Fibermesh [NISA07] and lay-
ered subdivision [WM07] also address procedural surface
modeling, but neither supports the intuitive drag-and-drop
layered surface editing that our system demonstrates.

Our main contribution is a system which fuses sketch-
based interaction with a 3D analog of the intuitive layer-
based metaphors found in 2D graphic design tools such
as Adobe Illlustrator [Ado07]. With our interface, design-
ers use sketches to layer large-scale edits, fine details, and
even topological change onto an initial base surface. These
edits are completely procedural - at any time the designer
can manipulate parameters, copy-and-paste, or even drag ed-
its along the surface (Figure 1). Layered updates attempt to
preserve the intended “semantics” of edits - if operation n
is modified, operation n + 1 is “played back” relative to the
new output of operation n.
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Figure 1: In (a), an extrusion is dragged-and-dropped onto a layered displacement. The green displacement is dragged across
the base surface (b), taking the overlapping elements with it. Then the blue edit is stretched (c) and deleted (d). The extrusion is
automatically mapped back onto the green displacement (e), and then interactively dragged back onto the base surface (f).

Interactive layered surface modeling has been studied pri-
marily in the context of H-Splines [FB88] and Surface Past-
ing [BBF94], which are based on hierarchies of spline over-
lays. In Section 3 we generalize this concept to arbitrary
manifolds, resulting in the Surface Tree. H-Splines are a spe-
cific instance of the Surface Tree in which all nodes share a
global planar parameterization, which tends to result in sur-
face distortion when layers are significantly deformed (Fig-
ure 2c). In Section 4 we describe an alternative approach to
Surface Tree implementation suitable for meshes and point-
set surfaces which does not assume the existance of a global
parameterization, instead relying on a local parameteriza-
tion at each node, resulting in significantly reduced distor-
tion (Figure 2e). We also describe an efficient procedural
mesh data structure (Section 5), details on our interactive
techniques and sketch-based tools (Section 6), and a discus-
sion of the major limitations of our approach (Section 7).

Figure 2: In (a), a displacement “bump” is layered onto a
planar NURBS patch. As in H-Splines, the intrinsic NURBS
parameterization stretches as the planar patch is deformed
(b), resulting in a deformed displacement (c). Dynamically
computing a new local parameterization (d) reduces distor-
tion in the layered edit (e).

2. Background

Sketch-based tools simplify the 3D modeling process by al-
lowing designers to leverage existing artistic ability. Early
systems such as SKETCH [ZHH96] specified simple shapes
by gestural commands. To support free-form modeling, the
Teddy system [IMT99] directly inflated sketched 2D curves
into 3D, an approach adapted in many later works [KH06,
Ske07]. Recent profile-based techniques [LGS06] have ex-
panded the range of sketchable shapes. Volumetric sculpting

tools [GH91,AWC04,vFTS06] also leverage artistic talent in
free-form modeling, and are capable of producing highly de-
tailed models. However, much like physical sculpture, trial-
and-error iterative design is quite time-consuming.

Procedural modeling techniques [Ebe02] such as hierar-
chical Constructive Solid Geometry, or CSG [RV83], sup-
port infinite design refinement, with sketching tools in devel-
opment [JSC03]. Hierarchical implicit modeling [WGG99,
ABGA04] extends CSG with blending and warping opera-
tors, and is the basis of the ShapeShop system [SWSJ05].
Volumetric spatial deformation [Bar84,SP86,SF98,LJ04] is
widely used in commercial systems [Aut07] and is compati-
ble with CSG-style procedural hierarchies.

A key limitation of volumetric techniques is that they do
not easily support the intuitive notion of directly manipulat-
ing a 3D surface. In contrast, surface deformation techniques
allow the designer to explicitly “push-and-pull” the 3D sur-
face. Variational approaches [WW94, SCOL∗04] have be-
come quite popular (see [BS08] for a recent survey). How-
ever, introducing a dependency on the surface makes pro-
cedural composition non-trivial. The recent FiberMesh sys-
tem [NISA07] fuses variational techniques with a global
control curve network which can be arbitrarily refined, but
layering and relative definition are not supported.

Most procedural surface deformation techniques are
based on the notion of displacement [Coo84]. Originally
developed to add surface detail during rendering, displace-
ment mapping has evolved into powerful geometric textur-
ing techniques [PKZ04, Elb05]. Applying geometric texture
to locally-parameterized regions is essentially a mesh past-
ing technique [BMBZ02], and a recent extension [BMPB07]
takes exactly this approach. Like our work, these approaches
rely on local parameterizations, but none include an under-
lying dynamic procedural hierarchy.

Forsey and Bartel’s seminal Hierarchical Splines [FB88]
offered the first truly procedural approach to interactive sur-
face editing. B-Spline detail overlays were layered onto a
base patch and encoded using relative offset-vectors. These
detail surfaces naturally deformed as underlying layers were
interactively modified, but the shape of overlays was re-
stricted by the base knot structure. Surface Pasting [BBF94]
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addresses this limitation, by allowing arbitrary NURBS
patches to be hierarchically pasted to a base spline patch.

Surface pasting was initially developed to quickly approx-
imate layered spline displacement [BF93] by trimming holes
in the base spline and simply positioning the “paste” sur-
face in the trimmed hole. Although the result is only “ε-
continuous”, it is highly interactive, and has been applied in
the commercial modeling package Houdini [Sid07]. While
the initial system was limited to interaction in parameter
space, an interface for directly positioning pasted surfaces
has been developed [CMB97]. However, this “world-space”
interaction is ultimately mapped into the parametric domain,
exposing a critical limitation of surface pasting - it’s reliance
on the base patch parameterization. As underlying patches
are manipulated, the shape of the pasted surface follows the
(frequently un-intuitive) distortions that occur in parameter
space [TM98]. The assumption of an underlying global pla-
nar parameterization also makes topology change problem-
atic [SM03]. One of the key contributions of our work is to
develop a framework which resolves these limitations.

Multiresolution surfaces [ZSS97, LDW97, GKSS02]
adapt the H-Spline concept to mesh representations. How-
ever, the detail vector hierarchies used in these approaches
are derived automatically, and thus lack the user-constructed
semantics found in Surface Pasting and our Surface Trees. A
notable exception is [WM07], in which a dependency graph
of sketched subdivision curves and surfaces are inflated into
3D volumes. A layered subdivision “skin” blends these vol-
umes together. While this approach is promising, procedural
editing operations are constrained to mesh faces in the cur-
rent subdivision hierarchy, preventing the intuitive drag-and-
drop surface compositing provided by our system.

3. Defining Surface Trees

Hierarchical volumetric modeling techniques [RV83,
WGG99] represent complex volumes using trees of com-
position nodes, with primitive shapes at the leaves. The
power of these data structures is that any composition node
or primitive can be trivially replaced with another. In this
section we define an analogous structure for representing
direct surface manipulations - a Surface Tree.

At a conceptual level, a surface editing operation replaces
a bounded region U on a surface S with an open surface V ,
where the boundary ∂V coincides with ∂U . Each node N in
our Surface Tree simply carries out this replacement:

N (S,U ,V) = (S \U) ∪ V (1)

N can be thought of as a surface compositing operation, and
hence a complex surface can be recursively defined by ap-
plying nodes to a base surface B:

Si+1 =Ni(Si,Ui,Vi)

S1 =N0(B,U0,V0)

Intuitively, the final output surface is defined by incremen-
tally layering a series of surface patches Vi onto B. Although
the recursion above is sequential in nature, any Vi can be
defined by another series of compositions. Hence, a Surface
Tree is a structured binary tree of composition nodesN , with
a primary branch that contains B as the initial leaf node, and
a series of nested secondary branches which feed into the
Vi’s of the primary branch (Figure 3).

Figure 3: A surface editing operation locally replaces some
region U of a surface. In a Surface Tree, editing operations
can be applied hierarchically, although secondary branches
must always output open surfaces to be properly merged.

Note that the arguments to N are not independent. S can
be any surface, but it is necessary that U ⊆ S, and V must
always be an open surface patch. This implies that only B
can be a closed surface - all Vi’s must have an open boundary
(and hence so must all secondary branches).

In the equations above, we assumed that ∂V = ∂U . The
easiest way to ensure this is to define V = E(U), where E
is a boundary-preserving editing operation. Although arbi-
trarily complex edits are possible, assume for now that E is
a displacement map. The above definition allows V to be
procedurally re-computed if U changes. However, if the de-
signer changes U0 in Figure 3, S1 will change, and U1 will
need to be procedurally re-computed (Figure 4).

To ensure maximum flexibility, It is desirable that the re-
computation of U be as independent of S as possible. One
way to accomplish this is to use the tools of Riemannian
geometry [DoC94]. We restrict S to 2-manifolds embedded
in R3, guaranteeing that any point on S has a local neigh-
bourhood with disc-like topology. S is then covered with
a finite atlas of topological discs, referred to as coordinate
patches. A mapping P known as a planar parameterization
exists between each 3D patch and R2. Given an atlas on S,
we can now encode U as a mapping from some 2D region u
of the atlas parameter-space to the 3D surface. To simplify
the following exposition, assume that U is contained within
a single coordinate patch with parameterization PU . Then
we can write U(u) = PU (u), and rewrite Equation 1 as

N (S,u,E) = (S \U(u)) ∪ E(U(u)) (2)

With this formulation, Surface Tree nodes can be proce-
durally re-computed because the editing region U is encoded
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independent of the current 3D embedding of the input sur-
face S. Instead, it depends on the parameterization. Unfor-
tunately, to build a practical system using arbitrary mesh or
point-set representations, we must avoid assuming the ex-
istence of a global, consistent manifold parameterization as
we have no way of maintaining such a manifold in real-time.
This is problematic because we now lack a global embed-
ding space in which to fix the location and shape of each
layer. In the next section, we describe how we deal with this
issue and implement Surface Trees in our interactive system.

Figure 4: In (a), a displacement is applied to U ⊆ S to
create an edited region V . If U is changed, V can be re-
computed (b), but how can U be re-computed if S changes
(c)? One solution is to write U as a function of a 2D pa-
rameterization of S (d). Then if S is deformed, U can be
re-computed from the parameterization (e), allowing V to
be applied to the new surface (f).

4. Implementing a Surface Tree

In Section 3 we described a mathematical formulation of a
Surface Tree. In this section we provide details on our im-
plementation, focusing on how the tree is constructed and
updated. To begin, we assume that surfaces S are triangle
meshes, although our approach is also applicable to point
sets and arbitrary polygonal meshes.

Following Equation 1, a Surface Tree node N is a proce-
dural operator which applies an editing operation to an input
surface. In our system, the node operator is defined as

Sout =N (Sin,u,r,E) (3)

where u is a single point embedded in some parameteriza-
tion, r is the radius of a geodesic disc which contains U (ex-
plained below), and E is a mesh editing operation.

Our basic approach is as follows. The primary branch of
our Surface Tree begins with a base mesh B and incremen-
tally applies procedural editing operations:

Si+1 =Ni(Si,ui,ri,Ei)

S1 =N0(B,u0,r0,E0)

Editing regions U are defined as parameterized triangle
patches which approximate geodesic discs of radius r cen-
tered at seed points p. These per-node parameterizations are
re-used to approximate a global manifold - the anchor point

ui of each node is embedded in the parameterization com-
puted for some upstream node N j<i. Hence, when evaluat-
ing Equation 3, we project ui to the seed point pi on the
current surface Si to find Ui (see Figure 5).

Figure 5: To evaluate node Ni, we first map the anchor
point ui forward from the upstream node N j<i that it is em-
bedded in to the seed point p on the input surface Si. Next
we compute the editing region U by segmenting from Si an
approximate geodesic disc with radius ri around p, para-
meterize it, and generate the edited region V . Finally V is
combined with Si \U to produce the output surface Si+1.

Our procedural editing operations (Section 6) share a
common foundation, in that they are defined as boundary-
preserving modifications to one or more parameterized geo-
desic discs. Given a seed point p and geodesic radius r,
we use Dijkstra’s algorithm [Dij59] to segment an (approxi-
mate) geodesic disc from the mesh and parameterize it, cre-
ating the editing regionU (Figure 6). While many parameter-
ization algorithms are known [SPR06], we use the Discrete
Exponential Map [SGW06] because it produces consistent
distortion and is computed in-line with Dijkstra’s algorithm.

Figure 6: Given a seed point p on surface Si (a), we segment
a geodesic disc with radius ri (b), parameterize it (c), and
apply a deformation (d).

4.1. Node Anchoring and Updating

As noted, we lack a global atlas which can be used to fix
the position of each editing layer. We do, however, have a
parameterized support region computed for each editing op-
eration. Hence, we can embed the seed point p of an edit as
an anchor point ui in the existing parameterization of some
upstream node N j. This creates a dependency between Ni
and N j (Figure 7), so our Surface Tree is not strictly a tree,
but rather a highly structured dependency graph [Hae88].

This anchor point approach inherently avoids the ambigu-
ous case where an editing region U overlaps the boundaries
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Figure 7: Three bumps are layered onto a sphere. In (a)
the parameterized edit regions for Nodes 1 and 2 are shown.
Node 3 is anchored to Node 1 because it’s seed point does
not lie within Node 2’s support (b). The potential ambiguity
due to boundary overlaps in (c) is avoided because only the
seed points are embedded in the parameterizations (d).

of several underlying layers, as in Figure 7c. Since the an-
chor is a single point, it can be embedded in the parameter
space of a single input node. This embedded anchor can al-
ways be mapped forward through the tree to unambiguously
fix the position of the seed point using the algorithm listed in
Figure 8. Note that as a parameterized point u has both 2D
and 3D coordinates, here usage is determined by context.

Figure 8: The algorithm on the left maps the seed point ui
for the rightmost red node in Figure 7b from it’s embedding
in the green node to the output surface of the blue node.

With these encoding and anchoring schemes in place, we
can give an algorithmic description of how Equation 3 is
implemented (Algorithm 1). The steps in this algorithm are
equivalent to the visualization in Figure 5. Note that this al-
gorithm only explicitly handles the primary branch. In our
implementation, secondary branches generate arbitrary open
meshes which are layered onto the primary branch using a
geometric texturing editing operation, effectively “pasting”
the output of the secondary branch onto the surface.

4.2. Surface Tree Manipulation

One advantage of our surface tree construction is that layers
can be dynamically manipulated simply by interacting with

Si+1←N (Si,ui,ri,Ei)
p = Pro jectToSur f ace(ui)
U = GeodesicDisc(p,ri)
PU = ExpMapParameterization(U)
Si+1 = (Si \U) ∪ Ei(U ,PU )

Algorithm 1: Computing the output of a Surface Tree node.

the anchor points using a surface-constrained handle. This
3D widget, which also incorporates components for rotating
and scaling [SGW06], allows edits to be quickly “dragged-
and-dropped”, re-ordered, and deleted.

Interactive actions often require dynamic re-anchoring of
nodes, for example if the user drags a seed point outside the
support region of it’s anchor node. Hence, each time node
N is explicitly moved by the designer, we automatically re-
anchor it’s seed point in the “nearest” input node using Al-
gorithm 2. We implement the inverse mapping E−1 in this
algorithm by finding the triangle containing p and interpo-
lating u from the triangle uv-coordinates.

u← FindAnchorPoint( p ∈Ni )
k = i−1
u = E−1

k (p)
while u /∈ Uk

u = E−1
k (u)

k = k−1

Algorithm 2: Finding the anchor point for a surface point.

Algorithm 2 is also called during tree manipulation. Be-
fore removing node Ni, Algorithm 2 is used to transfer any
seed points anchored in Ni to some input node N j<i, af-
ter which Ni can be safely removed by connecting it’s input
Ni−1 to it’s outputNi+1. Similarly, to insertNk betweenNi
and Ni+1, any seed points anchored to Ni lying within the
new support ofNk are “pushed forward” toNk.

Although it is not possible to perfectly anticipate the
user’s intent in all cases, we find that our approach gives the
expected behavior most of the time. Essentially, if node A is
anchored to node B, then when B is dragged across the sur-
face, A will “stick” to it. This emulates the layer “grouping”
found in other layer-based tools such as Illustrator [Ado07].
Automatic anchoring will only link A to B if the user ex-
plicitly drags A on to B - anchoring does not change if B
is dragged underneath A. Note that the “layer order” is im-
plicitly defined by the dependency structure of the Surface
Tree, the user must explicitly re-order layers to, for exam-
ple, move a small edit at layer n on top of a larger edit
at layer n + 1. Surface Pasting tried to avoid this situation
by automatically re-ordering layers [BBF94], but there are
many cases where this behavior can produce un-expected re-
sults, and it diverges from 2D layer-based interfaces [Ado07]
where layer ordering is explicitly under user control.
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5. A Procedural Mesh Data Structure

Our system operates on triangle meshes. To simplify nota-
tion, we will consider a mesh to be a simple list of triangles.
Each node in our Surface Tree takes an input mesh Sin, mod-
ifies it, and outputs a new mesh Sout . As the edit region U
is defined with respect to Sin, each node is dependent on it’s
input mesh, making a full tree update O(N) in the number
of nodes. This can be reduced by storing all intermediate
meshes - then if the designer edits node i, only nodes j ≥ i
need be evaluated. Unfortunately, the overhead of copying
and storing the mesh at each node is overwhelming.

Since our edits are locally supported, it is possible to con-
struct a more efficient data structure for representing inter-
mediate meshes. First we define two abstract mesh editing
operations - Mask and Weld. Mask simply removes the tri-
angle subset U ⊂ S from S (Figure 9b), and, recalling our
previous notation V = E(U), Weld inserts V into the hole
created by Mask (Figure 9d):

Mask(S,U) = S \U Weld(S,V) = S ∪ V

As previously noted, a procedural edit E must preserve the
boundary of U , to avoid introducing “cracks” between S and
V . Hence, assuming that U and V have been computed, these
operators can be chained together:

Sout = Weld( Mask(Sin,U) , V )

In our system, the geometry of S is accessed through it-
erators, so Mask and Weld can be implemented as iterators
which either skip certain triangles (Mask) or iterate over
multiple meshes (Weld). With this approach, a node never
modifies Sin, but rather generates an iterator which masquer-
ades as a manifold mesh by transparently hiding the triangles
in U and inserting V . Clearly, Mask and Weld can be applied
recursively, creating a procedural mesh data structure.

In practice, our mesh is not simply a list of triangles, but
an efficient vertex/edge/face manifold representation. This
complicates the implementation of Weld, as it must transpar-
ently re-write the incoming and outgoing indices of bound-
ary vertices and edges, to preserve the outward appearance
of a manifold mesh. Note that Mask and Weld can be applied
to point set surfaces, where the implementation is simplified
because the explicit boundary re-writing is unnecessary.

Since Mask and Weld do not copy or modify Sin, they are
highly efficient even when applied to large meshes. They do,
however, add overhead to mesh iterations, which can limit
interactivity as the surface tree grows. Hence, we have found
it useful to occasionally cache a full copy of Sin at a node.
This cache simply copies the geometry produced by the in-
coming Mask/Weld iterators into a single manifold mesh,
which is much more efficient to iterate over. In particular, if
the user selects Ni for editing, we cache the output of Ni−1
to ensure that interactive feedback is as fast as possible.

Figure 9: The Mask operator creates a hole in S by hiding
triangles in the editing region U (a) during mesh iterations
(b). Edits E generate V by copying and modifying U (c),
which often involves mapping to uv-space for re-meshing.
Finally, Weld synthesizes a manifold mesh by transparently
combining Mask(S,U) and V during iteration (d).

6. Surface Tree Creation and Interaction

Our Surface Tree editor is implemented as an extension
to the ShapeShop modeling system [SWSJ05]. Similar to
other sketch-based modeling tools, ShapeShop’s workflow
involves a mixture of sketch-based and traditional interfaces.
A suggestion-list interface [IH01] allows the user to cre-
ate and modify a variety of edits based on sketched curves.
Other parameters are controlled using 2D and 3D widgets.

Visualizing and interacting with the existing Surface Tree
is a difficult task, one which we have only begun to explore.
To select an existing node for manipulation, the user clicks
on it’s support region. If multiple nodes lie under the cursor,
repeated clicking cycles through them. The selected node is
hilighted, and all overlapping layers are rendered transpar-
ently (Figure 11b). As the user manipulates the selection,
overlapping nodes are dynamically re-evaluated and ren-
dered. We limit re-evaluation of overlapping layers to main-
tain interactivity, the full tree update is deferred until the user
finishes with the manipulation (Figure 11d).

We now briefly describe the editing tools available in our
system. As previously noted, these tools operate on para-
meterized approximate geodesic discs segmented from the
mesh, which correspond to the decal parameterizations of
[SGW06]. Generally, edits take one or more user-sketched
strokes as additional parameters. Since our strokes are rep-
resented by spline curves, and displacement offsets by func-

Figure 11: The support region of an edit node is highlighted
when it is selected (a), and all overlapping layers are ren-
dered as transparent (b). Computation of layers in (c) can
be deferred as the user manipulates an underlying layer (d)
to maintain a minimum interactive frame-rate.
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Figure 10: Our system supports a variety of editing operations. Drawing a closed loop on the surface specifies a region for
displacement with varying falloff strength (a). Surface curves also can specify displacement (b), with an optional height curve
(inset strokes have been shifted). Arbitrary open meshes can be dynamically stitched into the mesh (c), creating a watertight
surface (d). Edges of sketched creases are also inserted into the mesh, to preserve sharpness (e). Displacements can be pulled
along 3D curves, and optional profile curves produce arbitrary generalized cylinders (f). Multiple surface patches can also be
connected to create dynamic holes and handles (g).

tional scalar fields, our edits can be computed at arbitrary
resolution, allowing high-quality surfaces to be generated.

6.1. Sketched Displacement

Displacement mapping [Coo84] is one of the simplest
types of procedural surface manipulation, and displacement-
painting tools [LF03] have become popular in commercial
systems [Pix07]. Although here we take a sketch-based ap-
proach, our techniques would be a useful addition to these
systems, as displacements painted into procedural decals can
be easily moved or later modified.

In our system, arbitrary surface regions can be displaced
by sketching a closed loop around the desired area (Fig-
ure 10a). The displacement offset is based on a smoothed
approximation to the 2D distance field of the region con-
tour [PKZ04, SWSJ05], allowing for a continuous range of
transition smoothness. Sharp transition edges are created by
inserting the sketched polyline directly into the mesh using
constrained Delaunay triangulation [She96].

Sketched open surface curves can also be used to dis-
place the surface, with an optional second curve being
used to modulate the displacement height (Figure 10b). The
width can also be tied to height, producing a variable-width
displacement reminiscent of the area-proportional inflation
used in the Teddy system [IMT99]. The scalar displacement
maps are created by accumulating radial 2D fields at regu-
lar intervals along the sketched curve. The combined field
is defined as maxi(hi ∗max(1− (di/ri)2)3,0)), where di is
the distance to the origin of the ith field, ri is it’s radius, and
hi the height. To create sharp creases, we remove the square
on the (d/r)2 term, producing a sharp, “inverted” falloff re-
gion. To accurately reproduce the crease, we directly insert
the sketched curve into the mesh, again using Delaunay tri-
angulation in parameter space (Figure 10e).

Displacements can also be extended along curved paths
(Figure 10f), supporting the construction of larger-scale ed-
its. The path can be dynamically edited by re-sketching, and
an optional second curve can be used to define a profile
function, turning the displacement into a flexible general-
ized cylinder. Note that the profile width must be blended
with the orignal width near the base of the edit to ensure a
smooth transition. Scalar parameters control this transition
region, and explicit tapering control is also available.

6.2. Holes and Handles

In addition to arbitrary sketched displacements, our imple-
mentation supports topology-changing operations such as
construction of holes and handles. This requires two decals,
each of which create an opening in the manifold. These 2D
holes are connected together with a generalized cylinder, re-
sulting in a 3D topological hole or handle (Figure 12a-e).
This manifold-stitching approach can be applied to arbitrary

Figure 12: A Handle node inserts an open “tube” into
the surface (a) based on two parameterized patches (b), by
opening two holes in the manifold (c) and mapping the tube
geometry along a path between them (d,e). This approach
does not rely on any notion of interior vs. exterior, allowing
arbitrary non-closed surfaces to be procedurally joined (f).
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non-closed surfaces (Figure 12f), as it does not require a con-
sistent inside/outside spatial partitioning.

To create a handle, the user first sketches an area dis-
placement, and then draws a line from it to another point on
the surface. Selecting the resulting suggestion icon creates
a hole or handle with the same contour at both ends. Alter-
nately, the user can draw a second contour, in which case we
interpolate between the two along the handle path.

6.3. Linked Copy and Paste

Similar to [BMPB07], our local parameterizations can be
used to paste arbitrary open meshes as geometric texture
(Figure 10c). Tree nodes can also be copied, including se-
lective copying of edits lying “underneath” higher layers.
A more significant advantage is that copied nodes can be
linked, such that when parameters of one node are modified,
linked copies are automatically updated (Figure 13).

In some cases, it can be useful to link some parameters but
not others (Figure 13d). It is even possible to link parame-
ters between arbitrary nodes - one can imagine a whole set
of edits whose parameters are driven by a few simple con-
trols. A sensible interface for constructing linked parameter
networks is one direction for future research.

Figure 13: The copies in (a) are linked to the shape of the
parent (leftmost) edit. In (b) only the path curve is linked, al-
lowing for different profile curves. The radius of each bump
in (c) is defined as 0.75 times the radius of the bump to it’s
left, allowing the leftmost edit to control all three (b).

7. Limitations

While our interactive system demonstrates the potential of
Surface Tree modeling, there is extensive room for improve-
ment. One major limitation is the use of the discrete ex-
ponential map (DEM) to parameterize edit regions, as it
frequently breaks down when crossing regions of widely
varying curvature [SGW06]. However, more robust algo-
rithms [SPR06] tend to “wobble” as the underlying mesh

changes, whereas parametric distortion in the DEM remains
very consistent, resulting in an interactive response that feels
more rigid. Improved parameterization algorithms would
immediately increase the range of our system.

Another limitation is that the response time of the sys-
tem varies depending on which edit is being manipulated, as
the computational cost of a tree update depends on the layer
depth of the modified node. The cost of updating a node is
highly variable - major factors include the resolution of the
input mesh, the size of the node support region, and the level
of refinement necessary to faithfully represent the edit. Gen-
erally, the 3-5 edits at the top of the tree are highly interac-
tive at moderate resolutions. Beyond that depth, some action
must be taken to guarantee real-time feedback. Currently we
use the partial-update scheme described in Section 6, which
can limit the designer’s ability to see overlapping layers de-
forming. An alternative is to compute edits at lower resolu-
tion during interaction, but the loss of fidelity is undesirable.
We note that the figures in this paper are all taken at interac-
tive mesh resolutions. “Production” surfaces can be gener-
ated by adapting the resolution at each node to ensure visual
fidelity, but this generally precludes real-time feedback.

The cost of tree updates is exacerbated by the dependency
structure of our tree. If node A is an input to node B, it will al-
ways be applied before B. Hence, each “layer” contains only
a single edit, and each must be sequentially re-evaluated to
avoid editing region conflicts. However, the editing regions
of A and B are often disjoint. In this case, as B is not actually
dependent on A, they could be computed in parallel. Imple-
menting this optimization requires an automatic surface par-
titioning, but will significantly enhance the user experience.

8. Results and Discussion

The primary goal of this work is to increase the power of
surface modeling tools available to designers, by allowing
them to “go back in time” and non-destructively modify any
modeling decisions made in the past. The model in Figure 14
demonstrates our progress towards this goal. The base shape

Figure 14: A Surface Tree can be layered on top of a sim-
ple BlobTree model (a) to increase surface detail (b). The
level of fine detail in (b) is quite difficult to create using
ShapeShop’s implicit surfaces.

c© The Eurographics Association and Blackwell Publishing 2007.
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Figure 15: Using our Surface Tree modeling system, procedural details can be layered on simple shapes to create organic (a)
and mechanical (b) models. We can also edit existing surfaces (c), and quickly construct shapes with high genus (d). Since the
models are fully procedural, the designer can manipulate underlying features at any time (e,f).

is an implicit volume sketched in ShapeShop, onto which
we have layered significantly more detail using our Surface
Tree interface. This approach results in a 3D model which
is completely procedural - each surface edit, as well as the
elements of the base surface, can be interactively modified.

Although our current system has many limitations, we
have found that this approach of compositing layered
sketched edits onto a sketched base surface is quite effec-
tive for quickly producing 3D models. By combining tra-
ditional geometric modeling techniques with dynamic sur-
face parameterization, our system is capable of creating and
manipulating a wide range of 3D surfaces (Figure 15). In
particular, layered displacements allow for the creation of
levels of surface detail that have not been demonstrated in
previous sketch-based systems, and sketched holes and han-
dles enable procedural topology change without resorting
to a volumetric approach. The underlying procedural hierar-
chy allows designers to efficiently explore design variations
without having to discard existing work. Linked copy-and-
paste simplifies many repetitive modeling tasks and we have
begun to explore other ways of exploiting procedural tech-
niques in the interface. One interesting direction is to attempt
to incorporate CAD-style parametric modeling techniques
into the surface editing domain.

One untapped benefit of our system is that our imple-
mentation techniques can also be applied to point-set sur-
faces [ZPKG02]. The key components - Dijkstra’s algo-
rithm, the Discrete ExpMap parameterization [SGW06], and
our procedural mesh data structure - can all be applied di-
rectly to point sets. A Surface Tree created using our mesh-
based interface could even be “played back” on a point-set
surface. A point-set implementation is under development.

Another aspect of Surface Trees yet to be explored is com-
puter animation. Procedural models are trivial to animate,
and linked node parameters could be an efficient way to an-
imate many effects. The ability to dynamicaly manipulate
layered surface geometry may be particularly beneficial in
this domain.
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