
SpinalTap: An Architecture For Real-Time
Vertebrae Drilling Simulation

Ryan Schmidt

12th April 2002

Abstract

This report describes the implementation of the SpinalTap virtual spinal surgery
simulation system. The goal of the system is to simulate drilling into vertebrae.
Two methods for reconstructing a vertebrae from CT scan data are presented. Sev-
eral models of an L3 vertebrae are reconstructed, with varying results. An ar-
chitecture for real-time high speed decimation of point volumes is explained and
implemented. Simulations performed with test data show collision testing rates of
over 400Hz on current PC hardware.
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1 Introduction

Traditionally, training surgeons has been a difficult task. Before a surgeon can be
trusted to perform procedures on a live human, he or she must show proficiency in
training situations. Currently several methods of surgical training exist. Observation
of an actual surgery will teach a new surgeon the steps involved in the procedure. This
method does not provide the ’hands-on’ experience critical to successful operations -
practice is required. Working on human cadavers is effective, but is rather expensive.
Artificial body parts are often used for training are not very realistic. Finally, training
on sedated live animals raises animal rights concerns.

The goal of this project is to simulate spinal surgery procedures that involve drilling
into the L3 vertebrae. During the operation a surgeon drills several holes into the
vertebrae. Pedicle screws are inserted into these holes and used to stabilize the spine.
Many novice surgeons are unfamiliar with the use of tools as powerful as a motorized
spinal drill. The effects of errors in this procedure are immediate and irreparable,
making the operation very dangerous. In addition, osteoperotic bone can be very brittle
in some places and it is very easy to drill too far. A surgeon must be prepared for this,
unfortunately experience is difficult to obtain without risk to the patient. This makes
spinal drilling a good candidate for training in a virtual environment.

A virtual model of the spinal vertebrae will be constructed from CT data. Surface
points are extracted from the CT images. A Radial Basis Function is fit to the these
points, providing a smooth polygonizable surface with an accurate inside-outside test.
Cylindrical point volumes are generated along pre-planned drill paths, then decimated
during simulation to provide density feedback.

A critical piece of the simulation environment is the haptic-feedback drill. This
drill gives the surgeon physical feedback similar to what he or she would feel in a real
procedure. The design of this haptic drill is being undertaken by Marilyn Powers and
is beyond the scope of this project.

A key problem is decimation of the vertebrae model at interactive rates. The physi-
cal feedback system requires an update frequency of 300-1000Hz to be convey realistic
information about the rigid vertebrae surface. The visualization system must update at
least 10 times a second for the user to consider the simulation interactive. These re-
quirements limit the accuracy of the collision detection system.

The problems focused on have been reconstructing a virtual vertebrae model from
CT data and real-time decimation of the point volume. An interactive surgery simulator
has not been developed, instead simulations of drill movement have been created to
validate the performance of the collision detection algorithm.

2 Previous Work

Real-time Surgery simulation systems have been presented by [26] and [14]. However,
these systems are not amenable to being modified for bone surgery simulation. [26]
simulated eye surgery as part of a larger tele-operated microsurgery robotic system.
The system relied on non-linear finite element methods (FEM) to simulate deforma-
tion and cutting of corneal tissue. A force-feedback physical interface was used for
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manipulating surgical tools. This system included motion damping, allowing the sur-
geon to operate with increased precision. Visualization was done using implicit prim-
itives under free-form deformation, where the deformation was based on a reduced
representation of the finite element mesh. Results were rendered on an HMD or large
back-projected display at an update frequency of 10Hz using high-end Silicon Graphics
workstations.

[14] implemented a system for arthroscopic knee surgery simulation. However, the
system lacked collision response mechanisms and did not allow for any modification of
the bone structure. Visualization was accomplished using real-time volume rendering
techniques on high-end graphics workstations. A SensAble Technologies PHANToM
was used to provide user input and haptic feedback. A system that simulated the effects
of cranial surgery on facial appearance was presented in [20]. Unfortunately this was
not a real-time system. The system relied on spring FEM to attach a skin mesh to the
skull structure.

Several other researchers have explored methods of simulating human physiology.
Muscle deformations were explored in [7] and [17]. These systems simulated defor-
mation effects based on FEM. [9] achieved FEM-based deformation of soft tissue in
real-time using a linear elastic model with quasi-nonlinear elasticity. A force-feedback
system was included, and rendering was done based on a deformed polygon mesh.
However, the real-time performance of the system relied heavily on precomputation,
which ruled out the ability to dynamically modify the structure of the finite element
mesh. [11] also presented a system for real-time deformation which relied on prepro-
cessing and did not allow modification of the element structure.

The systems presented so far have mainly been concerned with simulating defor-
mation of non-rigid bodies. To this end, they have all relied on some type of finite
element analysis to determine deformation. To achieve real-time performance they
have relied on heavy preprocessing or supercomputer-class hardware resources. The
systems that rely on precomputation have been unable to simulate any of the fracture
scenarios presented in [16]. These simulations are unworkable for bone surgery, which
requires modification of the underlying structure. However, FEM-based non-rigid body
deformation is not necessary as bone is a relatively rigid structure. In addition, the only
system presented so far which included an immersive simulation environment is [26].

3 A Virtual Vertebrae Model

A critical component of SpinalTap is the virtual vertebrae model. The efficiency of the
collision detection system relies heavily on the vertebrae data structures. The model
must meet these 4 primary requirements:

1. Support an accurate inside-outside test.

2. Support an accurate polygonization method.

3. Allow for fast rendering of decimated areas.

4. Be based on CT scan data.
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The model must support an accurate inside-outside test in order to generate points
inside the surface. These points are critical to the collision detection algorithm de-
scribed in section 7. Achieving real-time animation framerates implies that the verte-
brae surface must be rendered as a polygonal mesh. To guarantee spatial consistency,
it is essential that this mesh be generated from the same data used to determine density
values and collision points. Hence, the model must support a fast and accurate poly-
gonization algorithm. Techniques must also be devised to permit fast viewing of the
model during drilling.

The final restriction is the most problematic. The virtual vertebrae surface and
density field are to be based on Computed Tomography (CT) data. A stack of CT
slices of the L3 vertebrae will be the basis for the vertebrae model. Building the virtual
vertebrae from this standard medical data source allows the system to work with any
particular vertebrae and be tailored to individual patients.

3.1 Computed Tomography Data

3.1.1 Computed Tomography

Figure 1: CT scan axis (Sagittal, Coronal, Transaxial).

Computed Tomography imaging, commonly known as CT or CAT (Computed Ax-
ial Tomography) scanning, creates greyscale images similar to x-rays. An x-ray beam
and detector are swept 360 degrees around the object in question, creating a slice im-
age that represents a thin planar section of the object. A set of these slices is called a
stack or volume. This stack of images represents a volume in space and can be directly
visualized with volume rendering tools [12] [10].

CT volumes are distributed as stacks of images along one of three primary axis.
These axis are form a right-handed coordinate system and have a standard orientation
in relation to patient position during scanning (see figure 1). The Transaxial axis runs
from head to toe, with the positive direction being towards the head. The Sagittal axis
is positive towards the patient’s left hand. Finally, the Coronal axis is positive towards
the patient’s posterior. This project considers the sagittal, coronal, and transaxial axis
to be the X, Y, and Z axis, respectively
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A standard stack file format is defined as part of the Digital Imaging and Commu-
nications in Medicine (DICOM) specification. Many DICOM tools allow for re-slicing
of a CT volume along any of the primary axis. This re-slicing generates a new stack of
images.

3.1.2 L3 Vertebrae CT Stack

Figure 2: L3 vertebrae CT scan stack, slices 20-22.

A transaxial DICOM stack of 95 512x512 pixel images of the L3 vertebrae has been
provided by the Laboratory of Human Anatomy and Embryology at the University of
Brussels, Belgium. These images represent 180x180mm slices. The actual vertebrae
volume covers at most 224x212 pixels on any slice, corresponding to approximately
79x75mm segments of the vertebrae. The excess image area has been removed and
a few slices can be seen in figure 2. This implies that the maximum volume of the
vertebrae is approximately 560,000mm3. The maximum diagonal distance across a
slice is about 109mm, implying that a drill bit will never intersect the vertebrae over
more than 109mm of it’s surface.

Actual vertebrae volume takes up a relatively small portion of the stack volume.
Even after the excess image area has been cut down from 512x512 pixels to 224x212
pixels, over 80% of the volume is empty.

Several attributes are needed to map CT slice pixels into actual world coordinates.
These are the X and Y pixel spacings, and slice spacing. X and Y pixel spacings
are measured between the centres of two adjacent pixels. Slice spacing is measured
between the parallel centre lines of two adjacent slices and represents the distance the
CT scanner is moved between slices (see figure 3). Any point in the CT volume can be
mapped to and from world coordinates based on these spacings.

The L3 stack in use is a transaxial stack. The X and Y pixel spacings for the stack
(corresponding to the sagittal and coronal axis) are both 0.352mm. The slice spacing in
the transaxial axis is 0.5mm. Hence, pixel resolution in the Z direction is significantly
lower than in the XY plane. This is apparent when texture-mapping 3D planes with
sagittal and coronal slices generated from re-slicing of the transaxial volume. These
images appear to be stretched in the Z axis due to the lower Z resolution.

One other attribute available for the CT volume is the slice thickness. The slice
thickness for the L3 transaxial stack is 1.1mm. This measure implies that each CT
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Figure 3: CT slice coordinate system, pixel spacing, and slice spacing.

slice represents a 1.1mm thick slice of matter. The slice thickness for the L3 volume is
larger than twice the slice spacing. Hence, each slice slightly overlaps the slice above
and below it. These noise due to these overlaps complicates the segmentation process
described in section 3.2.3.

3.2 Surface Reconstruction

3.2.1 Previous Work

Many techniques have been applied to the surface reconstruction problem. Perhaps
the simplest method is to apply a polygnization algorithm to the volumetric data [23].
The surfaces produced using this method are generally not smooth. Another option
is to create a stack of 3D contours and stitch them together (REFS). This technique
can produce relatively smooth surfaces. Unfortunately, stitching contours to produce
a surface of arbitrary topology is very difficult. Several researchers have attempted to
fit surfaces directly to a set of surface points. Early methods involved orienting planes
to create signed distance functions, with reasonable results [18]. An enhancement to
this technique invovled fitting Bernstein-Bézier patches to the signed distance function,
achieving C1 continuity [1].

While effective at constructing a polygonal surface, each of these techniques fails
to meet one of the requirements of the vertebrae model. Namely, none provide a fast
inside/outside point test. These methods all fit polygons or parametric surfaces to the
CT data. However, recent research in radial basis functions [5] [6] [28] [3] [4] has
provided a powerful method for reconstructing 3D models from a set of surface points.
Fitting a radial basis function (RBF) to this set of surface points results in an implicit
function - the simplest sort of inside/outside test. Any implicit surface polygonizer
[29] can be applied tothe RBF to produce a polygonal mesh. The process of fitting and
evaluating a radial basis function is described in detail in [5].

3.2.2 FastRBF

FastRBF is a commercial surface fitting tool that employs radial basis functions. The
software is distributed by FarField Technology and a 30,000 point time-limited license
is available for trial use. FastRBF includes an implicit polygonizer that produces opti-
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Figure 4: A problematic CT slice. On the left is the original CT image. Contrast and
brightness have been increased to highlight ambiguous pixels. The resulting segmented
slice is shown on the right.

mized triangle meshes. FarField Technology has implemented fast multipole methods,
as well as the centre reduction and smoothing algorithms described in [5].

The final RBF defining the vertebrae surface has approximately 14,000 centres.
However, the the largest initial set of centres had over 130,000 points, well over the
30,000 point limit allowed by the FastRBF trial license. This prompted a new method
of fitting to be applied. The list of surface points was chopped into groups, based on
z height. A separate RBF was fit to each of these groups with reduction applied. This
reduced the total centre count to well under 30,000. A final RBF was then fit to these
centres with smoothing applied.

There is some question as to how much accuracy is lost by fitting portions of the
final surface separately. The real area of concern lies near the edges of the sub-surfaces.
There is a possibility that the centre reduction algorithm would discard points that are
unnecessary for the sub-surface, but would not be discarded if the entire RBF could be
fit directly.

One option considered to decrease the likelihood of unwanted reduction was to fit
an RBF to each slice, along with a range of adjacent slices on either side. The reduced
set of centres for the slice would then be extracted. Reduced centres at the edge of any
sub-surface are ignored, minimizing loss of important centres. However, in practice
this technique was unnecessary. Reduction did not discard enough centres to seriously
affect surface topology. However, RBF smoothing did affect surface topology, see
section 3.3.5.

3.2.3 Segmenting CT Slices

Radial basis functions fit a smooth surface to a set of surface points and off-surface
points. To fit an RBF to CT slices the surface points must be generated from greyscale
image pixels. Determining surface points is an edge-finding problem. The set of sur-
face pixels (and off surface points generated from surface pixels) defines the surface in
3D space.

Existing methods have been devised to automatically extract surface contours out
of CT and MRI data [13] [19]. Surface points are then generated along these smooth
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contours. These techniques are generally used as an initial step and require verification
by a trained professional. For the purposes of this project, only one CT stack needs
to be segmented. The segmentation was done by hand, using the magic wand tool
in the GNU Image Manipulation Program (GIMP). Manual segmentation is a time-
consuming process.

The GIMP magic wand tool is a simple threshold-selection tool that can be used to
find edges based on pixel intensity. This tool worked moderately well for many slices.
Unfortunately, significant noise is present in most slices. These noisy pixels are visible
in middle picture in figure 4. The dark U-shaped area in this slice is at the bottom of
an indentation in the vertebrae surface, where high curvature exists in the plane of the
slice.

Many pixels that are obviously outside of the surface have a higher intensity than
pixels inside the visible boundary. The intensity-based magic wand tool selects these
noisy pixels before selecting the inner pixels. To avoid selecting exterior pixels the
user must manually manipulate the magic wand threshold. The danger here is that on
adjacent slices slightly different thresholds may be necessary to avoid picking noisy
pixels. This reduces the amount of coherence between the surface pixels of adjacent
slices. The surface can ’wiggle’ back and forth a pixel or two. To avoid this situation
pixels deemed exterior to the surface needed to be manually deselected.

3.3 Pixel-Based Surface Reconstruction Method

3.3.1 Point Generation

Surface and off-surface points (OSPs) must be extracted from the CT slice images in
order to fit an RBF surface. Surface points can be generated by isolating the surface
pixels as described in section 3.2.3 and placing a point at the center of each pixel.
The points can then be transformed into world space using the algorithm described in
section 3.1.2. The resulting set of surface points is shown in figure 5.

Generation of OSPs is a more daunting task. As described in [5], the placement
off OSPs is an important determinant of final surface smoothness. The first attempt
at OSP generation was a pixel-based method. For each surface pixel, adjacent North,
East, South, and West pixels were examined. If the surrounding pixel was inside the
surface (in the solid grey areas of figure 4) an ’inside’ OSP was produced. ’Outside’
OSPs were generated for pixels determined to be outside the surface. An RBF was fit
to the final set of points using the FastRBF software and methods described in section
3.2.2.

3.3.2 Initial Results

The initial manual segmentation of the CT slice images resulted in 44,327 surface
points and 88,123 off-surface points. RBF’s were iteratively fit to these 132,450 points.
After reduction, the final point set numbered just over 28,000. The inital surface was
fit with no smoothing (left image of figure 6). This surface is far too rough to be used
in the simulation environment.
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Figure 5: A Radial Basis Function is fit to this set of surface points to create a virtual
vertebrae surface. The RBF automatically interpolates through the areas with low point
density.

Figure 6: Results of pixel-based OSP generation. The left image has no smoothing.
The middle image has smoothing factor 0.5, and the right image has smoothing factor
30.

9



Figure 7: Irregular segmentation provided by the GIMP magic wand tool. On the left
is the segmented surface. Off-surface pixels are shown on the right.

Figure 8: The same slice as shown in figure 7 after manual smoothing.

3.3.3 Segmentation Edge Smoothing

Analysis of the segmented CT slices provided a possible explanation as to why the
initial surface was was so rough. The contours produced by the GIMP magic wand tool
were very irregular, as can be seen in figure 7. The two arrows point out particularly
noisy areas. Remember that an RBF is fit such that it will interpolate the values given
for all surface and off-surface points. The line that passes through the center of each
white pixel has very high curvature. The problem is multiplied when fitting a 3D
surface due to registration errors between successive slices. This irregularity causes
the ’bumpy’ surface shown in figure 6.

The irregularity in surface pixels is mostly due to undersampling. The magic wand
tool has very few pixels to work with and noisy edges are the result. To increase
the smoothness of the RBF surface, the individual segmented edges needed to be
smoothed. This smoothing was done by hand on each individual slice. The results
of manual smoothing can be seen in figure 8.
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Figure 9: Results of RBF smoothing. Left image has no smoothing. Middle image has
smoothing factor 0.5, and right image has smoothing factor 30.

3.3.4 Results After Smoothing

43,834 surface points remained after manual smoothing, from which 87,558 off-surface
points were generated. The fitted RBF was marginally smoother than the initial surface,
but still very rough. One obvious problem was that, while smoothing had been applied
to each slice, no smoothing was done between consecutive slices. However, it was
surprising that the pixel smoothing had so little effect. A likely culprit was the inherent
smoothing applied by the resolution of the polygonization algorithm. Polygonization
’chops off’ small areas of very high curvature. The high-curvature surface sections
fit to the noisy pixels in figure 7 were likely removed by the polygonization algorithm.
This implies that a smooth surface can not be fit directly to the point set generated from
pixels.

3.3.5 RBF Smoothing

One last avenue for smoothing the RBF surface was available. A relaxation factor
can be introduced which allows the RBF fitting process to generate a surface with less
curvature. This process was applied with varying smoothing factors. As can be seen
in figures 9 and 6, the smoothing factor is very effective. The right vertebrae in these
images is arguably smooth enough to use in simulation.

RBF smoothing does come at a price. The smoothing factor reduces the accuracy
of the final RBF. The fitted RBF is less constrained to pass through the surface and off-
surface points given to the fitting algorithm. With a large smoothing factor, noticeable
volume change can take place, shown in figure 10. The visible white pixels in the right
image show a large deviation from the actual surface.

This deviation is important because density points will be generated in this area,
however the CT slices contain no bone mass here. The density of points generated
in these areas will be zero. This implies that the user will be able to drill several
millimetres into the surface before experiencing any drill resistance. Obviously this
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Figure 10: Comparison of fitting accuracy. The silhouette of two smoothed RBFs
(white) are shown with the unsmoothed RBF (red) overlayed. The left image has
smoothing factor 0.5, the right has a factor of 30.

surface cannot be used.

3.3.6 Conclusions

The pixel-based method of generating OSPs is unworkable. An accurate surface is too
noisy, but a smooth surface exhibits too much volume change. A better method of
generating off-surface points must be applied.

3.4 Normal Estimation Surface Reconstruction Method

3.4.1 FastRBF Normal Estimation

A strong determinant of final surface smoothness is the off-surface point (OSP) dis-
tance. In section 3.3, the distance to OSPs was rather low, relative to the size of the
vertebrae. This produces a very constrained surface. Unfortunately more distant OSPs
cannot be determined from slice images. Generating OSPs based on an estimated 2D
normal is innefective for slices where even minor curvature exists in the slice (on the
axis coming out of the slice image).

The typical method of generating OSPs is to project them out along the normal to
the surface point [5]. Point normals are generally not available for an arbitrary point
field. However, techniques have been devised to approximate a normal based on the
local point field [5]. These methods rely on an outward-pointing vector to determine
normal orientation. Given these outward-pointing vectors, FastRBF can generate OSPs
at user-specified distances from the surface point. A new RBF is then fit to this set of
surface and off-surface points.

These outward-pointing vectors can easily be generated from the CT image slices.
The 4-neighborhood of each surface point is examined. Start with an initial vector of
(0,0). Add one to the x coordinate if the left pixel is an ’outside’ pixel, and subtract one
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(a) f ront

(b) side

Figure 11: Comparison of normal and pixel-based OSP generation. Left and right
images are pixel-based, with no smoothing and smoothing factor 30. Middle image is
normal based with smoothing factor 0.5.

if the right pixel is outside. Similarly, add one to y for an outside top pixel, and subtract
one for an outside bottom pixel. The resulting vector is a 2D outward-pointing vector,
which is sufficient for the normal generation techniques. Note that this algorithm can
produce ambiguous (0,0) vectors. Surface points with these ambiguities were simply
discarded, as only 6 of the 43,834 were problematic.

3.4.2 Results

A surface point set was generated from an initial set of 43,828 surface pixels. FastRBF
generated almost as many off-surface points, resulting in 87,485 final points. An RBF
was fit to this set with smoothing and point reduction enabled. The set of output centers
was reduced 84% to 14,344 centers. A smoother surface was fit to only 6775 centers,
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Figure 12: Comparison of fitting accuracy between normal and pixel OSP generation
methods. Left and right images are pixel-based with smoothing factors 0.5 and 30.
Middle image is normal based with smoothin factor 0.5.

however the level of volume change was deemed to be too high.
The surface is visually much smoother, as can be seen in figure 11. In addition, the

vertebrae volume is preserved quite well. The initial images in figure 12 were rendered
at approximately double the resolution of the actual CT images. This implies that a one-
pixel discrepancy between the smoothed red silhouette and underlying unsmoothed
white silhouette is within the pixel accuracy limit allowed by the CT image.

The normal-based RBF is as arguably as smooth a surface as is possible when
fitting directly to pixel values. To increase surface smoothness a method such as fitting
2D piecewise splines to the surface pixels would be necessary. In addition, expert
judgement is recommended to determine whether the set of surface pixels picked out
from a slice is accurate.

4 The Virtual Drill

The virtual drill model is separated into two components - the drill handle and the drill
bit. The drill handle would only be represented graphically and has been left out of the
current implementation. It has no effect on the vertebrae drilling process. The drill bit
is the only part of the system that can affect the vertebrae.

4.1 Drill Bit Geometry

The drill bit is composed of a cylinder with a conical end cap, as shown in figure
13(a). Unless the surgeon plans on drilling through the vertebrae into internal organs,
the section of drill bit that needs to be tested for collisions will be no longer than
approximately 50mm. The conical end-cap to the drill bit cylinder is expected to make
up about 5mm of this length. The diameter of the drill bit is typically in the 2.5-3.5mm
range.
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(a) geometry (b) point test

Figure 13: virtual drill bit

4.2 Drill Bit Point Inside/Outside Test

Testing whether a point is inside our outside of the drill volume is a critical part of
the collision detection process. Implicit definitions of a cylinder and cone exist and
can be used to determine point inclusion. The canonical definitions of these primitives,
oriented along an axis and based at the origin, provide a simple test. However, the drill
bit may be arbitrarily oriented in space. This implies using the general equations of
a cylinder or cone. These equations are rather complicated to produce and evaluate.
Another option is to transform the test point back into the canonical primitive space.
This requires an expensive matrix multiplication. Neither of these are very efficient.

The last option for a point inside/outside test is to use a geometrical method. This
algorithm is based on a vector projection and magnitudes. The point in question is
projected onto a line through the center of the drill bit, as shown in figure 13(b). The
distance from point P to point Pnear is used to determine whether or not the point is
inside the drill bit volume. The algorithm is shown below.

Algorithm 1

�
Vdrill

� D2
� D1 d � �

�
Vdist

� 2�
Vpoint

� P � D1 if � d � radius2 � then

α ���Vdrill 	 �Vpoint
 �Vdrill


2 outside

if � α � 0
�

α � 1 � then if � α � lengthcylinder
lengthtotal

� then

outside r � � 1 � α �� lengthcone
lengthtotal

if � α � 0 � then if � d ��� r2 � radius2 ��� then�
Vdist

� �Vpoint outside
else inside�

Vdist
� α

�
Vdrill

� �Vpoint
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Figure 14: The Path Planner interface. The CT slice images displayed on the left
correspond to the positions of the transparent guide planes intersecting the model on
the right.

5 Path Planning Tools

5.1 Vertebrae Inspection

The interface used to plan drill paths is shown in figure 14. The main view window
displays the vertebrae model and can be manipulated by the user. The three smaller
views allow the user to step through the CT slice stack along the transaxial, coronal,
and sagittal axes.

The positions of the transparent guide planes shown in the figure are dependent on
the currently visible CT slice image (in each axes). These guide planes are meant to
help the planner relate the CT image to the 3D model. They can be disabled for a clear
view of the model surface.

5.2 Path Planning

Path planning is done by manipulating the end points of the path line. The drill surface
is rendered along the path to aid the user in correct placement. Model transparency
allows for manipulation of the end of the path inside the volume, shown in figure 15.
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Figure 15: A sample path similar to those used for pedicle screw placement.

6 An Efficient Drilling Path Data Structure

6.1 Motivation

SpinalTap simulates the ’feel’ of drilling into a rigid structure by providing collision
feedback at rates of several hundred cycles per second. This feedback has to correspond
with what the user sees on the screen and expects to feel. Two opposing problems exist
- how to detect drill/volume collisions accurately and how to do so quickly. Generally
one of those must be sacrificed to enhance the other.

Most collision detection systems are meant to be applied to large-scale interaction
between volumes where few assumptions can be made about properties of the volume
[24] [2][15]. SpinalTap, however, is a very specific application. The project goal is
to decimate a section of a small rigid object with high accuracy. To achieve the col-
lision rates required, a very simple, highly optimized collision detection algorithm is
necessary. Arguably the simplest volume primitive is a single point. A set of points in
space that fit inside the vertebrae surface can be generated, essentially creating a ’point
volume’. Decimation is then accomplished by discarding points as they are found to
be inside the drill volume.

Point volume density is a critical determinant of simulation realism. Too sparse a
point volume and the feedback will be irregular or ’jumpy’. On the other hand, too
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Figure 16: The cylindrical point volume data structure used for collision detection.

dense a volume results in unacceptably low collision cycle rates. SpinalTap currently
uses a point density of 0.1mm. This provides adequate simulation speed. The haptic
drill is not avaible for testing, so it is uncertain whether this resolution is sufficient.
It has been suggested [25] that extrapolation could increase the frequency of feedback
without requiring an increase in data resolution. These methods may be the only option
if point resolution is too low, as it will be shown that lowering the resolution to even
0.5mm pushes the limits of current hardware.

6.2 A Cylindrical Point Volume

The obvious method of generating a point volume is to fill the entire vertebrae with
points. This method results in ludicrous memory requirements and would be utterly
impossible to process quickly. Here a basic fact about spinal surgery becomes very
useful - spinal surgeons do extensive planning and know well before hand where they
intend to drill. Using this pre-planned drill path, a smaller (but equally dense) point
volume can be constructed by only generating points in the voxels along the drill path.
Unfortunately initial analysis of this revised system showed that the time needed to
process all voxels was still too high [27].

An alternate method involving non-static points that migrate with the drill bit sur-
face was considered. This technique still provides the highest collision accuracy but it
is unclear how to guarantee that migrating points cover the entire drill volume. This
method also requires evaluation of the vertebrae RBF at run-time, which may be com-
putationally infeasible even with fast multipole methods.

Again, the restricted problem domain comes to the rescue. SpinalTap is a system
for simulation of spinal drilling surgery. Drills bits are cylindrical in shape, with a
conical end cap. The surgeon can only drill along the pre-planned path in one direc-
tion - into the vertebrae. Finally, because of the conical end cap, volume decimation
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occurs ’outward’, meaning that along any planar slice perpendicular to the drill path,
the conical end cap will pass through the slice before the rest of the drill bit.

The obvious choice for the point volume is a cylinder of radius somewhat larger
than the drill bit, oriented along the planned drill path. The cylinder can be split up
into discs perpendicular to the drill path vector. Due to the ’drilling outward’ property,
these discs can be split into concentric rings of points. The data structure we are left
with is a cylinder of discs of rings of points, shown in figure 16.

6.3 Filling The Point Volume

The point generation scheme begins with a path constructed using the path planning
tool described in section 5. A canonical disc of point rings is generated and copied
down the Z axis at 0.1mm intervals. This cylindrical point volume is then transformed
to align with the path vector.

Points outside the vertebrae volume are culled using the same RBF used to create
the vertebrae surface. The FastRBF software could be used for this, however in the
interests of avoiding commercial tools the RBF was evaluated using the standard brute-
force method. With an RBF of approximately 16,000 centers, this is an expensive
operation. Culling the point volume is by far the most compute-intensive part of point
volume generation. The process takes upwards of an hour for a large volume with
0.1mm point spacing. Indeed, this evaluation expense is one of the reasons why testing
was limited to 0.1mm spacing. Generating a volume at 0.05mm spacing produced
a point set file several hundred megabytes in size and took approximately 8 hours.
Applying Fast Multipole Methods to this process would increase output speed, however
the volume size is unaffected.

The final size of a point volume given the inital path length and radius is easily
calculated using the following formulas:

pointsdisc
� 3 � n � � n � 1 � where n � radiusvolume

spacing

pointsvolume
� pointsdisc

� lengthpath
spacing � 1

To get a feel for these numbers, take an imaginary point volume of radius 4 and
length 10. At 0.1mm spacing, each disc has 4,681 points and the entire cylinder con-
tains 468,100 points. At 0.05mm spacing, each disc has 18,961 points and the cylinder
contains 3,792,200 points. Halving the point spacing results in roughly an 8-fold in-
crease in point count.

6.4 Disc Point Distribution

Since the point volume will ultimately be used to determine total feedback strength
applied to the user, the distribution of points should be uniform. There is a possiblity
that a completely uniform distribution would produce the physical analogue of aliasing.
In this case, jittering could be applied to the uniform distribution - but an initial uniform
distribution is still necessary.
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Generating a uniform distribution on a regular grid is very simple, however doing
so on circular discs is less intuitive. Obviously a uniform distribution along the axis
of the cylinder can be achieved by simply spacing the discs at regular intervals. Inside
the discs, however, each point should be equidistant from it’s neighbours. One method
of guaranteeing this involves circumscribing the disc inside an initial regular hexagon,
then subdividing the equilateral triangles that make up the hexagon [21]). A geometric
property of this subdivision is that all resulting triangle are equilateral, hence subdi-
vision is repeated until the edge length of any triangle is less than the required point
spacing. Unfortunately, another geometric property of this method is that when the
subdivided points are connected with rings each ring contains only 6 points (the points
of a hexagon). The high ring count provides increased collision resolution but incurs a
large cost in the collision detection algorithm.

A somewhat less uniform method for populating the point disc has been devised
that is optimal for collision detection. The innermost ring is created with 6 points
spaced at 60 degree intervals (the vertices of a hexagon). The arc length between these
points is computed and all successive rings are constructed such that their arc length
is equivalent. It can be shown that the limit of the distance between the points is
equal to the arc length as the radius goes to infinity. For 0.1mm spacing, this results
in point spacing between 0.103mm and 0.104mm for any particular ring. The radius
is determined simply by multiplying the ring number by the spacing value. Hence
discs and rings are equally spaced, and points around a ring are near-equally spaced.
One possible problem here is that the spacing between points on different rings is not
uniform. Visually they appear to be, however further analysis has not been attempted.

7 Fast Collision Detection

7.1 Basic Algorithm

The basic collision detection algorithm is simply a point inside-outside test on the drill
bit cylinder and conical end cap. First the line connecting the tip and base of the drill
is projected on to the line down the center of the cylindrical point volume to determine
how far along the path the drill is. Then each disc up to this point is tested against
the drill volume. Testing a disc is relatively straightforward - points are processed
from the inner to outer ring for inclusion in the drill volume using algorithm 4.2. Each
disc maintains a pointer to the outermost completely destroyed ring, which reduces
the number of points that need to be considered. Testing out to the last ring is also
unnecessary. By determing where the drill line intersects the disc plane, finding the
distance between this point and the center of the disc, then adding the drill bit radius,
the outermost disc that can possibly have a point intersection is determined.

7.2 Correcting For On Path Bias

The collision testing algorithm performs best when the drill exactly follows the planned
path. In this case the minimum possible number of rings must be tested, and these rings
move from undestroyed to fully destroyed very quickly. However, as the drill diverges
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Figure 17: Degradation of the collision detection algorithm due to off-path drilling. All
rings that overlap the drill (dark grey circle) must be tested.

from the planned path, more rings must be tested, and many points in these rings will
not intersect the drill. This can be seen in figure 17. On the path only 3 rings need to
be tested, while in the off path case all rings must be tested.

Testing all these extra points results in a significant slowdown. However, due to
the cylindrical nature of the drill bit, these extra tests can be avoided. The elliptical
projection of the drill bit onto the disc plane is convex. Only two intersections with any
given ring are possible. Collision testing must start at a point on the ring that is inside
the drill bit cylinder. Testing proceeds around the ring away from this point in each
direction until a non-intersecting points are found. At this point it is guaranteed that
no additional points intersect the drill bit. The vector from the disc center to the drill
line / disc plane intersection point (calculated to determine the outermost ring) can be
used to find a point that must be inside the volume if any collisions will occur. This
algorithm is currently not implemented in the SpinalTap system.

8 Rendering

8.1 Vertebrae Surface

The vertebrae surface is rendered using the polygonal mesh generated from the ver-
tebrae RBF. During the point volume generation stage, triangles entirely inside the
volume cylinder are removed, creating a hole around the drilling area. This method
occasionally leaves small holes around the edge of the drilling volume, as a triangle
may intersect the volume cylinder but it’s vertices may all be outside. This case could
be avoided by casting rays along the edges of triangles near the volume and testing for
cylinder intersection.
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Figure 18: The point rendering method breaks down as the surface gets closer to the
viewer. The upper left image is correct, however artifacts begin to appear in the lower
left image and grow progressively worse, until the surface breaks apart.

8.2 Point Volume Rendering

Rendering of the point volume surfaces is done using an extremely basic splatting
zwicker[22] [30] algorithm. Points in the volume are simply rendered using the
GL POINTS OpenGL primitive. As can be seen in figure 18, this method is of limited
effectiveness. In an actual virtual surgery environment the vertebrae would be smaller
than the picture on the left, so in this case rendering the points directly works well.
However, as the vertebrae is enlarged the distance between points in relation to pixel
size grows, and the surface breaks apart. Switching to a different splatting primitive at
close range (such as spheres) and using adaptive splat sizing would result in a closed
but rounded surface.

While the GL POINTS primitive is very fast, the point volume used for testing con-
tained approximately 1 million points. During drilling processor time is at a premium
and the user is unable to see inside the drilling volume because the drill bit blocks the
hole. Only surface points need to be rendered. Surface points are determined by ex-
amining the RBF value for the point. If the value is within a pre-defined threshold then
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Figure 19: A transparent view of the model during a drilling simulation. The surface
discs can be seen half way down the drill bit.

it is marked as a surface point. The current implementation marks and renders entire
discs as surface discs instead of individual points, shown in figure 19. This costs some
rendering time but avoids increasing the size of the point data structure. In practice,
very few discs are surface discs and the rendering overhead is minimal.

A final issue with point rendering is normal calculation. Normals for surface points
are taken from the vertebrae RBF. At inner points normals only need to be calculated
once they are visible. When the user stops drilling, the final drill bit orientation is used
to calculate normals for non-surface points near the drill bit surface.

Frame rates of 10 to 15 frames per second were achieved using this technique. The
largest computational cost is the conditional test that must be performed for each point
to determine whether or not it has been destroyed. If a color was stored for each point,
the alpha component could be set to zero for destroyed points. This would allow for
batch rendering of all points and provide a significat speedup. However, storing a 4-
component color for each point increases the memory footprint of the point volume by
one half.
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9 Results and Analysis

9.1 A Realistic Sample Path

One of the main reasons surgeons drill in to vertebrae is to insert pedicle screws. These
screws are attached to metal plates that stabilize the vertebrae when a ruptured disc
is removed. Pedicle screws are inserted in roughly the same orientation as shown in
figure 19. This path provides a good test for the performane of the collision system.
Besides being relevant to intended use, it is nearly as long a path as is possible through
a vertebrae. The culled point set contained 986,958 points in 378 discs.

9.2 Initial Simulation Attempts

A real haptic drill was not available to test the collision algorithms, so simulation of the
positional input from an imaginary haptic drill was attempted in software. In hardware,
the drill positional input would be received asynchronously by the operating system.
The rendering and collision engines should also be running asynchronously, as the
renderer cannot keep pace with the collision engine. This architecture was simulated
using three threads on dual-processor Intel Pentium 3 and 4 machines. One thread
moved the drill forward along the path. A second thread ran the collision algorithm
continuously, and a third rendered the scene when necessary. Ideally, the collision
algorithm would run one processor while the drill and visual updates ran on the other.

SpinalTap runs in the Linux operating system, which is not a real-time operating
system (RTOS). An RTOS provides hard limits on things like process/thread priority
and wait times. Linux does not. The first technique tried was to have the drill thread
continuously move the drill a short distance (less that 0.001mm), sleeping for several
hundred microseconds between moves. Initial results were very promising - the col-
lision algorithm ran at several thousand cycles per second on a 1400 Mhz Pentium 4
dual-processor machine. However, the drill movement thread only woke up 100 times
per second. Linux cannot provide an alarm signal at any higher frequency, so for most
collision cycles the drill position had not changed. When the drill doesn’t move, no
new collisions occur, and the collision engine has to do very little work.

An attempt to enhance this system was made by removing the sleep call altogether.
The drill movement thread then ran at 30,000 to 60,000 updates per second. At this
rate, the movement distance had to be reduced from 0.001mm to 0.000001mm. Unfor-
tunately, because of the limited accuracy of single precision floating point, large errors
accumulated when moving such a small distance. The drill often diverged so badly
from the path that it started moving backwards. In addition, because Linux cannot
guarantee processor allocation to a particular thread, it was impossible to determine
whether or not the collision engine had a processor to itself.

9.3 Collision Engine Timing

Attempts to simulate realistic drill input had to be abandoned due to deficiencies in
Linux thread scheduling. However, some sort of measure of the collision engine effi-
ciency was still needed. A simplified architecture was designed wherein the collision
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Figure 20: Comparison of collision detection rates between a 733 Mhz Pentium 3 dual
processor machine and a 1400 Mhz Pentium 4 dual processor machine.

engine works in lock-step with the drill update thread. First the drill update thread
moves the drill a small distance, then the collision engine runs, and the cycle repeats.
The rendering thread was left unchanged. In this model it was safe to assume that the
collision engine / drill movement cycle would be allocated one processor, and the drill
rendering thread the other. The number of collision cycles per second was output and
a graph of one of the data sets is shown in figure 20.

On a dual-processor 1400 Mhz Pentium 4 machine, collision cycle frequences of
over 400Hz were achieved. Initial collision cycle frequencies are much higher because
the number of point tests required increases as the drill penetrates the point volume.
Point test count is highest near the end of the path, so the final numbers in the graph
must be used when analyzing efficiency. The probability of increasing this rate beyond
the 1000Hz barrier is discussed in section 9.5.

9.4 Problems

9.4.1 Off Path Slowdown

The graph shown in figure 20 was generated by a drill moving directly along the
planned path - the optimal situation. An additional run of the simulation was made
with the drill placed near the edge of the point volume. This results in less efficient
collision point culling, described in section 7.2. The timing results of this off-path sim-
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Figure 21: Comparison of on-path and off-path collision detection rates between a 733
Mhz Pentium 3 dual processor machine and a 1400 Mhz Pentium 4 dual processor
machine.

ulation are plotted with the on-path values in figure 21. A slow down of approximately
20% is apparent on both the 1400Mhz and 733Mhz processors.

9.4.2 Hardware Bottlenecks

Correctly interpreting the results shown in figures 20 and 21 requires some knowledge
of the underlying computer hardware. The first obvious discrepancy is the relatively
smooth decrease in speed of the Pentium 3 chip versus the ’jumpy’ irregularities in the
Pentium 4 graphs. This can be traced back to peculiarites of the Pentium 4 architecture,
particularly the dual-channel RDRAM memory bus. Dual-channel RDRAM has a peak
throughput rate of 3.2 GB/s, however it has a rather high read latency. In addition, the
Pentium 4 has a much deeper execution pipeline than the Pentium 3. Unless great care
is taken to schedule instructions properly, read latency can cause pipeline stalls, which
essentially force the processor to slow down until the memory can ’catch up’.

The next relevant statistic is that the 1400 Mhz Pentium 4 provides about a 2.8 times
speedup in the on-path case, yet the clock frequency is only twice as high. The speedup
rises to 2.9 times in the off-path case. Again, examining the memory bus architecture
provides some answers. The Pentium 3 has the same dual-channel RDRAM as the
Pentium 4, however it only has a 133Mhz memory bus. This means it can only support
a peak memory throughput rate of 1.06 GB/s [8]. The Pentium 4 has a 400Mhz memory
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bus and supports the full 3.2 GB/s throughput rate. This is where the additional speed
increase comes from. The speedup increases in the off-path case because more memory
must be read (more of the volume must be processed).

The effects of memory latency and pipeline stalls on the Pentium 4 are especially
apparent when comparing the on-path and off-path graphs for that architecture. In
some cases the off-path drill actually beats the on-path drill, while in others it does
much worse than the average 20% slowdown.

9.4.3 Limits on Current PC Hardware

Several fundamental limits can be extrapolated from the test data and information about
available hardware. Each point uses 32 bytes of memory, so the 986,958 point data set
requires 30.1 MB of RAM. In the on-path case the entire data set is never needed
for a single collision cycle, some basic analysis shows that approximately 20% of the
volume is needed in the worst case (at the end of the path). If the smart off-path
collision detection algorithm described in section 7.2 is implemented, off-path drilling
requires no more memory reads than on-path drilling, so 20% percent is a reasonable
estimate for the actual number of points read in the most expensive collision cycles.

The question now arises of how much the point density can be increased before
the simulation speed drops below acceptable levels, say 100 Hz. The assumption is
made that a processor exists that can process data as fast as it is read (this assumption
is not so unrealistic). At 32 bytes per point, this limits point reads to about 1 million
per collision cycle, implying that the full data set is approximately 5 million points.
In section 6.3 it was noted that halving the point spacing causes an 8-fold increase
in point count. Reducing the resolution of the sample pedicle screw path to 0.05mm
would increase the point count to over 8 million.

Note that this estimate is greatly oversimplified - in particular, requiring 20% of the
point volume for a collision test seems rather high. However, the memory bus limits
do exist, and will be problematic when trying to increase the realism of the simulation.

9.4.4 Numerical Accuracy

The memory bandwidth limits discussed in the previous section are only one difficulty
with increasing simulation realism. Another is floating point numerical accuracy. The
current system relies on single precision floating point values. Point coordinates are
stored in world space, and the coordinates at the extents of the vertebrae volume require
3 digits on the left side of the decimal. It is commonly accepted that single precision
floating point provides about 7 decimal digits of numerical accuracy. With 0.1mm
spacing on points that require 3 digits for the integer world coordinate, only a few
digits remain for spacing and calculation accuracy.

As the point spacing is reduced, more error will accumulate, until point coordi-
nates become indistiguishable. The solution to this problem is to use double precision
floating point numbers for point coordinates and collision testing. However, double
precision math is much slower than single precision math. In addition, double pre-
cision point coordinates increase the size of the point data structure by 40%. This
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increases memory bus requirements by 40%, implying that the spacing will have to be
reduced to meet memory requirements.

9.5 Parallel Collision Detection

Assuming that a 0.1mm point density is viable, it may be necessary to increase the
collision cycle rate. Several optimizations can be made to the existing code using SIMD
vector operations and optimized cache pre-fetching. These techniques will provide a
reasonable speedup but are very processor-specific. The real question is whether the
algorithm can be run in parallel on multiple processors

Since each disc is processed independently, the collision algorithm should scale
directly to multiple processors. The range of discs to test can be initially determined,
and a subset of discs assigned to each processor. No concurrency problems can arise
as each set of discs is independent and no processor needs to know anything about
the other processors. The number of points to process on each disc is relatively even,
so work distribution between processors would be fairly uniform. It is likely that the
scaling factor for parallel execution will be nearly linear.

10 Conclusions and Future Work

A model of an L3 vertebrae was successfully reconstructed from CT scan data. The
accuracy of the model is restricted by the manual methods used to segment the CT slice
images. While a moderately smooth surface was reconstructed, manual segmentation
is clearly not the best way to determine surface points and smooth out edges. Fitting
smooth contours to the individual slices would create a much smoother RBF. Develop-
ment of a method for increasing consistency between the edges on consecutive slices
is also critical. Expert judgement is needed to determine if the resulting RBF surfaces
are acceptable.

The SpinalTap Path Planner user interface is very minimal. Many additions would
be useful in a realistic surgery planning environment. One rather important omission
was displaying the drill path on the CT slice images - without this it is difficult to tell
exactly where the drill is going. If the Path Planner is to be useful in a real simulation
system, Fast Multipole Methods must be implemented so that point generation can be
done in a reasonable amount of time.

Volume decimation using a cylindrical point volume appears to be a very effective
technique for drilling in to solid surfaces. However, the limitations on point density
require investigation. It may be possible to apply more elegant sorting techniques. The
method implemented in the SpinalTap system is essentially a brute force technique. A
multiresolution algorithm in which a higher density point set is only tested near the
drill tip (where collision count is high) may allow for increases in point density that
avoid hardware limits. Extending the collision engine to a parallel implementation will
increase the number of collision cycles that can be processed. If update frequencies of
several hundred hertz are sufficient, a parallel algorithm will allow point density to rise
and increase the realism of the simulation.
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SpinalTap, in it’s current state, provides a solid architecture for a realistic drilling
simulation system. Lacking a haptic drill, it is difficult to determine whether or not
the current point density and collision test rate are adequate. Even with a haptic drill
in place, a real-time operating system seems necessary to provide the feedback rates
required. These components lay the foundation for a powerful drilling simulation sys-
tem that will be applicable to any sort of material for which density information can be
obtained.

References

[1] Chandrajit L. Bajaj, Fausto Bernardini, and Guoliang Xu. Automatic reconstruc-
tion of surfaces and scalar fields from 3d scans. In Proceedings of SIGGRAPH
95, Computer Graphics Proceedings, Annual Conference Series, pages 109–118,
Los Angeles, California, August 1995. ACM SIGGRAPH / Addison Wesley.

[2] David Baraff. Analytical methods for dynamic simulation of non-penetrating
rigid bodies. Computer Graphics (Proceedings of SIGGRAPH 89), 23(3):223–
232, July 1989.

[3] R. Beatson and G. Newsam. Fast evaluation of radial basis functions, 1992.

[4] R. K. Beatson and L. Greengard. A short course on fast multipole methods.
Wavelets, Multilevel Methods and Elliptic PDEs, pages 1–37, 1997.

[5] Jonathan C. Carr, Richard K. Beatson, Jon B. Cherrie, Tim J. Mitchell, W. Richard
Fright, Bruce C. McCallum, and Tim R. Evans. Reconstruction and representation
of 3d objects with radial basis functions. Proceedings of SIGGRAPH 2001, pages
67–76, August 2001.

[6] Jonathan C. Carr, W. Richard Fright, and Richard K. Beatson. Surface interpo-
lation with radial basis functions for medical imaging. IEEE Transactions on
Medical Imaging, 16(1):96–107, February 1997.

[7] David T. Chen and David Zeltzer. Pump it up: Computer animation of a biome-
chanically based model of muscle using the finite element method. Computer
Graphics (Proceedings of SIGGRAPH 92), 26(2):89–98, July 1992.

[8] Intel Corporation. Intel chipsets comparison chart.
http://developer.intel.com/design/chipsets/linecard.htm.
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