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Figure 1: We begin with a coarse tessellation of an implicit surface (a). The implicit model is defined by a hierarchy of simple components,
which are visualized using geometric massing (b). These elements of visual scaffolding are composited with a real-time pen-and-ink rendering
system (d), providing a visual history of the interactive modeling process (c).

Abstract

Inspired by the comic-book production pipeline, a method is pro-
posed for integrating visual aspects of the sketching process into
3D sketch-based modeling systems. In particular, artist-drawn con-
struction aids called visual scaffolding are explored. Two scaffold-
ing components which simulate elements of pencil sketching, geo-
metric massing and eraser marks, are integrated into a rendering
pipeline which also includes a suite of new object-space techniques
for high-fidelity pen-and-ink depiction of implicit surfaces. Based
on a hybrid, hierarchical approach which leverages both the im-
plicit surface definition and an underlying coarse tessellation, new
methods are described for computing silhouettes, suggestive con-
tours, surface stippling, and surfel-based visibility culling. These
techniques are real-time but require no pre-computation, allowing
them to be applied to dynamic hierarchical implicit surfaces, and
are demonstrated in ShapeShop, an interactive sketch-based mod-
eling tool. The result is a real-time display pipeline which compos-
ites these novel scaffolding and pen-and-ink techniques to depict a
visual history of the modeling process.

Keywords: sketching, visual history, visual scaffolding, geometric
massing, eraser marks, interactive pen-and-ink depiction, implicit
surfaces, sketch-based modeling

1 Introduction

Sketch-modeling systems, which attempt to replace the standard
“menus-and-control-points” 3D modeling workflow with a more
natural stroke-based interface, are growing in popularity and ca-
pability. Early systems such as Teddy [Igarashi et al. 1999] have
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been turned into computer games, and recent systems such as
ShapeShop [Schmidt et al. 2005] can be used to create a wide range
of complex 3D models. One of the goals of sketch-modeling is to
more naturally support traditional sketching workflows. Designers
often prefer sketching to 3D modeling in part because sketches are
more likely to interpreted as “works in progress,” rather than fi-
nal models [Schumann et al. 1996]. Some sketch-based modeling
systems have attempted to simulate this property with “sketchy”
rendering styles [Igarashi et al. 1999].

However, like all aspects of design, sketching is a process of re-
finement, compositing, and correction. With traditional sketching,
there is an inherent visualization of this process. Sketch-modeling
tools do away with this notion - even when non-photorealistic de-
piction is available, it is cast as just another “rendering mode,” and
the current 3D model is presented as if it simply popped into exis-
tence. This prevents the designer from seeing the previous choices
and errors which led to the current model.

Our goal is to improve support for traditional sketching work-
flows by simulating the visual output produced during the sketching
process. Since “the sketching process” is difficult to characterize in
general, we look to a domain where the pipeline is highly specified -
namely, comic books and graphic novels [McCloud 1994]. Classic
texts such as Lee and Buscema’s “How To Draw Comics the Mar-
vel Way” [1984] lay out a series of steps for producing consistent,
high-quality drawings of figures and objects, guidelines which have
been applied by generations of comic book artists. The technique
prescribes incremental addition of detail, beginning with a coarse
geometric massing of the basic shape using simple geometric com-
ponents (Figure 2). Sketch-modeling workflows follow a similar
process, where 3D models are constructed by incrementally sketch-
ing components. Hence, we visualize the models using a rendering
style based on geometric massing (Figure 1).

When sketching with pencil, erasing a line often leaves behind a
faint eraser mark, which is a useful guide for correcting mistakes.
We model this visual effect by faintly rendering deleted compo-
nents. We characterize geometric massing and eraser marks as ele-
ments of Visual Scaffolding, which encompasses visual elements
that are not part of the “final” surface, but correspond to artist-
constructed visual aids and other marks that one would see when
sketching on paper. Our display of visual scaffolding reduces the
gap between sketching interfaces and traditional sketching.



The final step in the comic-art production pipeline is “inking,”
where the artist draws a pen-and-ink image over the pencil sketch,
in effect using the entire sketch as visual scaffolding. We model
this stage as well, by layering a real-time pen-and-ink depiction
of the current 3D surface on top of the geometric massing and
eraser marks. This allows for simultaneous visualization of both
the smooth surface and the underlying internal model structure.

We implement our rendering pipeline in ShapeShop [Schmidt et al.
2005], a sketch-modeling system based on hierarchical implicit vol-
ume models [Wyvill et al. 1999]. Algorithms for pen-and-ink ren-
dering of implicit surfaces are non-interactive on complex mod-
els [Foster et al. 2005; Stroila et al. 2007], so we develop a suite
of novel techniques for real-time pen-and-ink depiction of dynamic
smooth surfaces. Briefly, we find low-fidelity silhouette and sug-
gestive contours by applying brute-force object-space algorithms to
a coarse base mesh which approximates the smooth surface. These
contours are incrementally refined and projected to the surface. We
adapt surfel techniques to both remove hidden lines and generate
stippling. A hierarchical data structure provides efficient visibil-
ity culling and dynamic instantiation, and view-adaptive techniques
ensure that contours remain smooth when zooming in.

The main benefit of our pen-and-ink renderer is that it provides
real-time performance on complex 3D surfaces which are being in-
teractively modified. Previous techniques generally require costly
mesh pre-processing which must be repeated each time the surface
changes [Hertzmann and Zorin 2000]. Our approach is designed
to work with the coarse tessellations found in current 3D modeling
systems (Figure 6), and hence can be easily integrated into these
tools. Note also that while we describe our algorithms in the con-
text of an implicit representation, they can be easily applied to other
functional smooth representations such as subdivision [Stam 1998]
and parametric spline [Foley et al. 1996] surfaces.

Figure 2: Character sketching is often an iterative process. The
artist begins with a rough geometric “massing” (leftmost image),
which helps ensure correct proportions and perspective. The de-
tailed character is then sketched over top of this visual scaffolding.
(Images © Wizard Entertainment, Inc).

2 Related Work

There has been little exploration of what we refer to as visual scaf-
folding in the graphics literature. 3D construction planes are a basic
form of visual scaffolding which appear in many systems. Recently,
[Ijiri et al. 2006] employed transient visual scaffolding in the form
of 3D concept sketches, which are then progressively refined, in
the context of a plant-modeling system. Static visual scaffolding
in the form of instructive visual aids has been explored in educa-
tion research [Khusro et al. 2004], and the concept of visual history

has seen some use in 2D document editing systems, particularly for
revision visualization and selective “undo” [Kurlander and Feiner
1990; Hardock et al. 1993]. A variety of techniques have been ex-
plored for visualizing recent interaction history in the HCI litera-
ture [Baudisch et al. 2006; Bezerianos et al. 2006]. Some commer-
cial CAD systems support revision tracking, but generally this is
limited to displaying the “difference” between two models.

Depicting 3D shapes with line and contour drawings has a long his-
tory in computer graphics. CAD systems often employ feature lines
to visualize 3D models [Requicha and Voelcker 1982]. Technical
limitations initially made this necessary, however current CAD sys-
tems still include these line-based rendering modes, as they make
it possible to visualize internal structure in a way that is difficult to
mimic with shaded surfaces. While transparency can be useful for
this task, transparent objects become difficult to differentiate when
many are overlapping [Harrison et al. 1995].

Early line-drawing techniques for representing 3D surfaces at-
tempted to simulate the lines that an artist would draw, focus-
ing on silhouette and feature lines [Saito and Takahashi 1990].
These methods evolved into more general techniques for simulat-
ing pen-and-ink drawing, a traditional method of artistic depic-
tion. In addition to feature lines, pen-and-ink techniques include
stippling [Deussen et al. 2000; Secord 2002] and hatching [Salis-
bury et al. 1994; Winkenbach and Salesin 1994] to depict shad-
ing and texture of the surface. Extensive work on generating pen-
and-ink-style renderings [Winkenbach and Salesin 1996; Salisbury
et al. 1997; Hertzmann and Zorin 2000; Zander et al. 2004; Fos-
ter et al. 2005] has resulted in very high-quality images [Isenberg
et al. 2006]. Most of these techniques require significant computa-
tion time, making them inapplicable to interactive modeling. Real-
time methods are available [Freudenberg et al. 2001; Praun et al.
2001; Fung and Veryovka 2003], but involve pre-computed surface-
parameterizations which limit them to static models.

Object-space mesh silhouettes are a key component of our sys-
tem, and a variety of existing techniques are available [Isenberg
et al. 2003]. We use the simplest brute-force methods, as more ad-
vanced algorithms either require costly pre-processing [Hertzmann
and Zorin 2000], or are randomized [Markosian et al. 1997] and
hence cannot guarantee frame-coherence. Kirsanov et al. [2003]
describe an interesting method in which a high-resolution mesh
is progressively simplified, allowing silhouettes to be efficiently
computed on the low-resolution mesh and then mapped back onto
the high-resolution mesh. Again, the mesh simplification is pre-
computed, limiting this technique to static models. We take a sim-
ilar approach, although we do not initially have a high-resolution
mesh, but instead an implicit surface.

A variety of works have addressed the problem of computing sil-
houettes, feature curves, and other pen-and-ink elements on implicit
surfaces. Bremer and Hughes [1998] used incremental techniques
to trace silhouette loops around simple implicit models, while Elber
[1998] projected points from a base mesh onto the implicit surface
and created strokes using this point distribution. We adapt this pro-
jection method, initially described by [Meier 1996], in Section 4.
Foster et al. [2005] built on these tracing and particle-based tech-
niques, creating a full pen-and-ink rendering system for complex
hierarchical implicit models. Jepp et al. [2006] have extended this
system using flocking techniques to render additional surface con-
tours. Stroila et al. [2007] describe a robust mathematical frame-
work based on implicit-surface intersection to compute silhouette

and suggestive contours, although C3 continuity is assumed. None
of these techniques are guaranteed to find all silhouettes, doing so
on an implicit surface requires interval algorithms [Plantinga and
Vegter 2006], however this is very costly. Burns et al. [2005]
do provide real-time techniques for contour extraction on high-



resolution volume data, but the 3D sampling required to convert our
implicit models into this representation is very time-consuming.

While some of these techniques are capable of interactive perfor-
mance, few scale to complex models, and none would maintain
real-time performance on complex implicit models which are be-
ing interactively modified. Particle-based methods can attempt to
interactively “track” the surface, but significant changes (particu-
larly topology change) are still very costly.

3 Visual Scaffolding

Most work in computer-generated artistic depiction focuses on sim-
ulating the artist’s finished work - the watercolor painting, cartoon
rendering, or pen-and-ink image. However, artists rarely produce
final pieces “from scratch.” Generally a constructive process is fol-
lowed, often beginning with “concept sketches” of varying levels of
detail. Even at the sketching stage, there are often conventions for
building up the drawing. An interesting case study is the domain of
comic books and graphic novels [McCloud 1994].

The production of comic book art follows a well-defined construc-
tion pipeline prescribed by classic texts such as [Lee and Buscema
1984]. Human figures begin as a sketched assembly of geometric
shapes, similar to the “massing” models common in architectural
design. The artist then sketches over top of this first pass with incre-
mentally more detailed sets of contours, using the geometric shapes
as a guide to maintain proportions and perspective (Figure 2). The
initial geometric sketch is not part of the final drawing, parts of it
which remain visible are usually erased. Hence, it can be consid-
ered an artist-generated visual construction aid, a particular element
of what we call visual scaffolding.

After the highly-detailed sketch is complete, it is turned into a pen-
and-ink image and possibly colored. The inking step is often per-
formed by a separate artist, the “inker,” who does not simply trace
over the initial sketch, but rather uses it as a guide to produce a com-
pelling pen-and-ink depiction. So, to the inker, the entire sketch is
visual scaffolding.

The faintly visible marks left by erasing pencil-drawn lines are an-
other element of visual scaffolding. If the design space of a sketch is
thought of as a tree, then these eraser marks show branches which
were partially explored and then abandoned. This information is
useful to the artist, as previous errors are visible and can be used
to make iterative adjustments to a sketch. An example is shown in
Figure 3a. Some artists also carry out design experiments simply
by over-sketching, as in Figure 3b.

Figure 3: Erased “mistakes” are still visible in the scanned draw-
ing in (a) (image contrast has been increased to make the faint lines
more visible). In (b), a red pencil has been used to explore possible
variations on the sketch (image (b) © Mike Krahulik).

The main point is that visual scaffolding is a key element of the
design process, used by the artist at all stages except when display-
ing the final work. In addition, this exploration and refinement of
design space is often iteratively accumulated in a single image. It
is interesting to compare this process to traditional 3D modeling
pipelines, where such visual history is very rare. That mistakes can
be made to instantly disappear is a ubiquitous “feature” of computer
graphics tools. Similarly, there is very little support for visualizing
the intermediary construction states of a 3D model, particularly in
an in-line fashion. One reason for this is that smooth shaded sur-
faces are difficult to adapt to the task. Visual scaffolding is much
easier to display in combination with pen-and-ink depiction, where
there is more “white space” to work with.

3.1 Geometric Massing

Automatically generating a geometric massing image such as Fig-
ure 2 for an arbitrary 3D model is non-trivial, in part because most
surface representations do not contain an intrinsic decomposition
into simple geometric shapes. However, many sketch-based model-
ing systems take a constructive approach, allowing the designer to
incrementally assemble a model by drawing individual pieces. This
approach lends itself well to the display of geometric massing.

After examining a range of samples such as Figure 2, we have for-
mulated some guidelines for geometric massing. Hidden lines tend
not to be drawn on individual massing elements, but separate ele-
ments are composited without any hidden line removal. In addition
to silhouette contours, planar contours passing through the “center”
of the geometric element are common. Generally only a subset of
these contours are drawn. Guidelines for this decision are difficult
to characterize, but some heuristics are described below.

We render goeometric massing by applying the contour-extraction
algorithms described in the next section. Each element has its own
base mesh, which is generally static and of low complexity. An
oriented bounding box is fit to the base mesh to determine the ma-
jor axes, from which the planar contours can be pre-computed. We
keep only the planar contours which have extents approximately
equal to the respective bounding box dimension. In addition, we
cull planar contours which are nearly co-planar with the view plane
(and fade them in as they become visible, to avoid “popping”). Sil-
houettes are extracted using the techniques described in Section 4.1.
To mimic the “sketchyness” typically found in geometric massing,
we draw each contour several times with random perturbations to
scale, angle, line width, and darkness.

An example of our geometric massing is shown in Figure 4. We
have also experimented with showing depth ordering of the internal
lines by modulating darkness based on layers of occlusion, which is
visible in Figure 4. There is some motivation for this in traditional
sketching, as some texts suggest that internal lines be erased as the
user adds detail. However, we apply it primarily because we have
found that in a 3D context it greatly assists with determining the
relative spatial position of the massing elements.

3.2 Eraser Marks

Eraser marks provide an interesting visualization of a sketch’s his-
tory. Providing a similar sort of visual feedback in an interactive
modeling system is both unprecendented and somewhat daunting.
The problem is one of determining what data is useful to display,
without overloading the user. For example, since paper does not
support “drag-and-drop,” we do not show eraser marks when the
user makes incremental changes to the model elements. Instead,
eraser marks are only shown when nodes in the implicit model are
deleted. Likewise, eraser marks on paper show what was drawn



Figure 4: Geometric massing of dog model (a) and overlaid with silhouette (b). The contrast of the massing lines has been increased to
improve visibility in print. In (c), a high-quality pen-and-ink image is shown with suggestive contours and stippling.

with the pencil. In our system, the user does not directly draw
the surface silhouette, but instead draws 2D contours which define
3D objects that in turn modify the 3D surface. Hence, instead of
showing eraser marks for the surface, we show eraser marks for
what was actually drawn - namely, the underlying implicit primi-
tive. This more closely reflects the intent of eraser marks, which
is to assist designers when trying to correct mistakes. While these
design choices seem most appropriate for ShapeShop, there are a
variety of other ways eraser marks could be used, particularly with
respect to interactive surface manipulation. Exploration of these
issues is left for future work.

An eraser mark is depicted in Figure 5. We currently show the
eraser mark from all viewing directions, which is satisfactory for
simple models, but may result in excessive visual clutter during a
long modeling session. In that case we could display an eraser mark
only when the viewing direction is near the one it was drawn from.
Another option would be to assume that the relevance of eraser
marks decreases over time, and fade them out to invisibility. This
is somewhat physically accurate, as the stray graphite that sketches
build up over time tends to eventually obscure eraser marks.

Figure 5: The smooth implicit surface depicted in the left image is
the result of blending three components. On the right, the selected
ear component has been erased, leaving behind an eraser mark.

4 Real-Time Pen & Ink on Implicit Surfaces

Conceptual 3D design tools are a promising application area for
interactive pen-and-ink visualization. In this context, it is criti-
cal to support high-fidelity visual comprehension of smooth sur-
faces, while also conveying the impermanent nature of the cur-
rent 3D shape [Schumann et al. 1996]. By simplifying the visual

representation, pen-and-ink renderings support both of these goals.
However, current interactive algorithms for pen-and-ink rendering
of 3D models assume that the usage scenario is exploration of a
static, high-resolution surface mesh [Hertzmann and Zorin 2000;
Zander et al. 2004]. This is problematic on two fronts - first, in-
terative modeling tools generally attempt to guarantee fast visual
feedback during model editing by tessellating smooth surfaces at
low resolutions. For example, standard NURBS tessellation reso-
lutions from the commercial tool Maya are shown in Figure 6. The
argument can be made that interactive resolution will scale with
computing power, but, historically, this has been counter-balanced
by increasing model complexity. The second issue is that, even if
high-resolution surfaces could be generated, these pen-and-ink al-
gorithms involve a significant amount of pre-processing. If the de-
signer is interactively manipulating the surface, this pre-processing
must be repeated each frame - a significant computational burden.

Figure 6: Standard mesh resolutions used to interactively dis-
play a NURBS patch in Maya at high (a) and medium (b) resolu-
tion, and interactive mesh resolution (c) for a moderately complex
ShapeShop implicit model (d).

The meshes in Figure 6 approximate the underlying smooth sur-
faces rather poorly, and the visual fidelity of any mesh-based pen-
and-ink algorithm is similarly limited by coarse tessellations. More
problematic is that the designer relies heavily on iterative visual
feedback to create the desired shape, and must estimate the smooth-
surface shape from these rough meshes. We address both of these
problems at once, by developing a suite of hybrid techniques which
leverage both the base mesh and the functional smooth-surface def-
inition. These techniques provide interactive pen-and-ink rendering
as the designer edits the model, as well as more accurately repre-
senting the shape of the smooth surface.



4.1 Silhouettes

Given an arbitrary smooth surface S ∈ R
3, any point p ∈ S is con-

sidered “on” the silhouette if it satisfies the equality

n ·v = 0 (1)

where n is the surface normal at p, and v = c−p is the view vec-
tor to the camera position c. Note that Equation 1 fails at creases,
where n is not defined, but in that case one can consider a a limiting
process which approaches the crease on either side.

Finding solutions to Equation 1 on a complex smooth surface is not
feasible in an interactive system. And, as we have noted, simply
using the interactive mesh, which we will call the base mesh, is
unsatisfactory. Hence, we use both - our general approach is to find
coarse silhouette contours on the base mesh, and then project them
onto the smooth surface. While this is only an approximation, we
have found it to be very effective.

The first step is to find object-space silhouette contours on the base
mesh. We use the basic brute-force approach, evaluating n · v at
each vertex of the mesh and extracting all edges whose vertices
have opposite signs. It is critical to our method that n be accu-
rately computed from from the smooth surface definition - normals
approximated from the coarse base mesh are much too noisy.

These initial edges are a very coarse approximation to the silhou-
ette contour, so a simple refinement is to find the zero-crossing
along each edge, and connect the “mid-edge” points with lines ly-
ing across the triangle faces [Hertzmann and Zorin 2000]. These
sub-polygon silhouettes provide an accurate approximation of the
base mesh silhouette, an example is shown in Figure 7a.

Figure 7: Smooth-surface silhouettes are approximated by comput-
ing sub-polygon silhouettes on a coarse base mesh (a), projecting
the vertices of this coarse silhouette onto the actual smooth surface
(b), and subdividing (c). The resulting silhouette is shown from the
camera viewpoint in (d), with stippling.

The sub-polygon silhouette is represented as a list of edges, one per
triangle. The next step is to project the vertices of these edges onto
the smooth surface, as shown in Figure 7b. The details of this pro-
jection depend on the smooth surface representation. On a NURBS
patch, one maps from the 3D mid-edge points into the uv-space of
the patch, and then back onto the NURBS surface. Our implemen-
tation focuses on implicit surfaces, where a scalar function f(p)

defines a scalar field over R
3, and the equality f(p) = v defines the

implicit surface, where v is the iso-value. The 3D vector∇f(p) of
partial spatial derivatives of f , known as the gradient, points in the
same direction as the surface normal when p lies on the surface, and
otherwise points towards the surface. Hence, to project a point onto
the surface, we “walk” in the direction of the gradient, updating p
using the following convergence iteration:

p← p+
(f(p)−v)∇f(p)

‖∇f(p)‖
(2)

Once the coarse silhouette has been been projected onto the surface,
we refine it by iteratively subdividing each silhouette segment until

a minimum-length threshold is met (Section 4.5), projecting new
vertices to the surface as they are generated (Figure 7c).

The convergence properties of Equation 2 are difficult to charac-
terize in general [Schmidt 2006]. Since we are interested in a fast
approximation, we assume f is well-behaved and only iterate twice
for the initial projection, and once during subdivision. We also
check that the initial projections are valid - if |f(p)−v| has grown,
we try stepping by half the initial distance, and if that fails, we dis-
card the segment, rather than risk displaying an invalid result.

In general, our projection/refinement technique is reasonably ro-
bust, even with coarse, low-quality base meshes. Some visual com-
parisons are shown in Figure 8, where our refined silhouettes are
compared to sub-polygon silhouettes on a high-resolution mesh.
The approximations are quite accurate, with no major errors, even
though the input data (the coarse mesh silhouette) generally con-
tains significant deviations from the desired result (Figure 8d).

4.2 Suggestive Contours

Silhouette contours alone provide only basic information about ob-
ject shape. Artists frequently convey the shape of more subtle sur-
face curvature by drawing additional contours. Attempts to for-
malize these contours led to the notion of a suggestive contour [De-
Carlo et al. 2003]. Informally, suggestive contours are curves which
would be silhouette contours in nearby viewpoints. Mathemati-
cally, consider the projection of the view vector v onto the tangent
plane at p. This gives a vector w which, along with n, defines the
radial plane at p. Taking the intersection between this plane and
the surface near p produces a 2D curve lying in the radial plane, the
curvature of which is is the radial curvature κr . Suggestive con-
tours can then be defined as points where κr = 0 and the directional
derivative of κr in the direction of w is positive:

Dwκr > 0 (3)

Like our silhouette contours, we find suggestive contours in object
space. We evaluate κr and Dwκr at base mesh vertices (using the
scalar field f , as mesh-based techniques are too noisy on our base
meshes), and then apply the sub-polygon and projection-refinement
techniques. Finding good suggestive contours does tend to require
a base mesh with somewhat higher resolution, but generally our re-
sults are similar to those found using a high-resolution mesh (Fig-
ure 9). Computing Dwκr from our scalar fields is problematic be-
cause we do not have the high-order continuity that is assumed in

[Stroila et al. 2007]. Our fields are only C1, so we have developed
a modified finite difference approximation, see Appendix A.

Figure 9: Comparison of suggestive contours computed using (b)
low-resolution base mesh and (c) high-resolution mesh. Image (a)
shows result without suggestive contours.

4.3 Stippling and Visibility Culling

Artists working in the pen and ink medium use various techniques
to depict interior shading on smooth surfaces, including small dots



Figure 8: An accuracy comparison on a simple model. The high-resolution mesh silhouette is shown in (a), and our technique in (b). The
difference image of the two silhouette contours is shown in (c). The coarse mesh’s sub-polygon silhouette before refinement is shown in (d).
In (f), the high-resolution silhouette is rendered in black, and our refined silhouette is shown underneath in red. The largest difference is
visible on the inside of the thumb, see detail in (g).

of varying density, called stippling, and short hatching strokes. We
support such elements in our rendering system by covering the sur-
face with small area-elements, called surfels [Pfister et al. 2000],
which can be thought of as local canvasses onto which stipples and
strokes can be drawn. We focus on object-space stipple-shading,
distributing stipple points evenly across each surfel and performing
visibility culling at run-time. Ideally, a distribution such as Poisson-
disk [Dunbar and Humphreys 2006] would be used, however we
found that a jittered regular distribution is generally adequate. The
surfel distribution is far more critical, as explained below.

Our stipple visibility culling attempts to simulate diffuse shading,
so we define the vector l which points towards the “light,” and cull
stipples based on the value of n · l. The stipple normal n is taken
from the surfel it lies on. We define an upper threshold tu ∈ [0,1],
and cull entire surfels if n · l≥ tu. If a surfel passes the culling test,
we then need to determine which stipples to render. The density
should vary based on n · l, so we assign a random value r ∈ [0,1] to
each stipple when it is created, and only render stipples if:

rk > (1−n ·v) (4)

where k controls the shading falloff (we use k = 2).

Figure 10: Z-buffer visibility culling using the low-resolution base
mesh (a), surfels (b), and high-resolution mesh (c) for comparison.
Artifacts occur primarily in concave regions of (a).

Each stipple and contour segment must also be tested to determine
whether it is currently occluded by some portion of the surface
nearer to the eye. A common mesh-based solution is to render the
mesh into the z-buffer, and rely on depth-testing hardware to deter-
mine visibility. Unfortunately this approach gives very poor results
with our low-resolution base mesh (Figure 10a). Another option
is ray-casting, which is accurate but too expensive for interactive
use with implicit surfaces. Instead, we adopt Foster et al.’s [2005]
approach of rendering the surfels into the z-buffer. Foster et al.

[2005] used particle repulsion to distribute surfels across the im-
plicit surface, seeding the algorithm with rather costly ray-surface
intersections. More robust algorithms are available [Meyer et al.
2005], however they are not fast enough for interactive use on com-
plex deforming surfaces. Instead, we adapt the method proposed in
[Meier 1996] of distributing surfels on the base mesh triangles and
projecting them to the surface.

Our main challenge in surfel generation is efficiently producing a
distribution of surfels which both covers the surface (for proper vis-
ibility culling) and also has a semi-regular distribution (to avoid
stippling patterns). First, we must produce a suitable surfel dis-
tribution on the base triangles. Meier [1996] randomly distributed
points, however this does not guarantee coverage of the surface.
Again, a Poisson-disk distribution would be ideal, but we are highly
constrained by computation time. We initially tried a subdivision
scheme, doing 1-to-4 splits with an area threshold, but this lead to
highly varying density across neighbouring triangles (Figure 11b).
Varying density is a visual cue for surface curvature, so these arti-
facts are likely to mislead the viewer. We achieve smoother results
(Figure 11c) by projecting the triangle into 2D and rasterizing it,
replacing pixels with surfels, which allows many surfels to be gen-
erated very quickly. Jittering can be added, however we have not
noticed major visual improvements by doing so.

Figure 11: Varying stipple density arising from non-uniform surfel
distribution of a low-resolution base mesh (a) can produce unde-
sirable patterns (b). Surfel “rasterization” results in more uniform
sampling (c).

If the surfels are distributed in the planar triangle using a regular
grid with spacing4, they will “spread out” when the are projected
onto the smooth surface, resulting in gaps (Figure 12a,c). This also
occurs with the random distribution of [Meier 1996]. To correct for
this, we rely on a simple heuristic. Along each edge of the triangle,
we know the chord length c and the angle θ between the vertex
normals. Hence, we can approximate the length of the projected



edge using a circular segment with arc length s (Figure 12a):

s =

�
c

2sin(θ/2)� θ (5)

The ratio s/c is computed for each triangle edge, and the largest
value gives us a uniform scaling factor for the triangle density.
However, the spreading is non-uniform, so we must correct for this
with non-uniform grid spacing. If our grid is aligned with one edge
of the triangle, as in Figure 12b, then we step along the X axis as
follows:

x← x+4 �1−k4 �1− t2x� �s

c
−1�� (6)

Here, tx = |x−xm|/(xm−xl) is used to apply a quadratic falloff
to the scaling factor s/c−1 as x gets further from the midpoint of
the projection of the triangle on the x-axis (see Figure 12b). Since
the projection is not necessarily circular, we oversample to ensure
that the surface remains covered. The constant k4 controls over-
sampling, we use k4 = 4. This scaling must also be applied in the
y-direction.

Figure 12: An overlapping surfel sampling on the base triangle
can contain gaps when projected onto the surface (a,c). Non-linear
scaling of the sampling density minimizes this effect (d).

4.4 Hierarchical Culling with Dynamic Expansion

The pen-and-ink rendering pipeline we have described involves a
large amount of data. We have a low-resolution base mesh, dy-
namic contours, surfels, and stipple particles, all of which must be
re-generated each frame if the model is changing. To minimize
the amount of data generated and processed, we organize the vari-
ous elements using a hierarchical data structure. At the root of the
hierarchy is the base mesh, which contains a set of base triangles
(Figure 13a). Each base triangle stores a set of surfels, and each
surfel in turn stores its stipple particles (Figure 13b,c).

To optimize rendering, we perform visibility culling at all levels of
this hierarchy. We assume surfaces are closed and cull at the trian-
gle level any faces which are completely back-facing. Off-screen
and occluded triangles can also be culled. Triangles passing the
culling tests have their surfels rendered into the depth buffer. After
the z-buffer has been filled, we extract and render contour lines, and
then perform lighting-culling at the surfel level using Equation 4.
Finally, the stipples lying on the remaining surfels are displayed if
they pass the lighting test (Equation 4).

This per-frame hierarchical culling provides a significant perfor-
mance benefit - we observe 20% to 80% reductions in rendering
time when the model is being rotated, with denser stippling gen-
erally dictating the rendering cost. To further reduce the computa-
tional load, we also use a lazy-evaluation scheme when generating
surfels and stipples. Initially we do not expand the hierarchy be-
yond the base triangle level. If a triangle passes the culling test,
its surfels are generated on-the-fly. Likewise, during the stipple-
rendering pass, stipples are generated as needed for surfels that pass

the light-culling test. We have found that it is also performance-
critical to avoid dynamic memory allocation, so surfels and stipples
are stored in pre-allocated linear memory buffers which grow in
fixed blocks. Using this dynamic expansion scheme, we observe
up to 50% reduction in surfel generation time for frames where the
base mesh changes. This is a major optimization, as it minimizes
the number of surfels which must be projected to the surface, which
is the most expensive step in our algorithm. There is a small cost,
in that later frames can be slightly more expensive when additional
branches of the hierarchy must be expanded.

Figure 13: Each base mesh triangle contains a set of surfels, which
in turn contain sets of stipples. This hierachical data structure effi-
ciently supports visibility culling and dynamic data generation.

4.5 View Independence

One of our goals is to improve the user experience by avoiding the
visual faceting one often sees with smooth shading (Figure 6). The
intent is similar to view-dependent meshing [Hoppe 1997], but in-
stead of mesh resolution, we automatically control contour subdi-
vision and stipple density as the user zooms in and out.

Visible “faceting” in the silhouette and suggestive contours can be
avoided by changing the subdivision error tolerance. It is too costly
to determine the optimal subdivision level on a per-segment basis,
so we rely on a global measure. We take two 3D points, each a
small distance from the model origin and lying in a plane perpen-
dicular to the viewing direction, and project them into 2D pixel co-
ordinates. The distance ρ between the 2D pixels is used as a global
view-scaling metric. The subdivision error tolerance is then set to
(1/ρ)ksil, where ksil is a constant depending on screen resolution
(we use ksil = 2, for a 1680×1050 display).

There are two other components to consider - surfels and stipples.
The same screen-space scaling metric can be used, with ρ control-
ling surfel and stipple density. We apply this approach for stippling,
attempting to maintain a consistent level of intensity as the user
zooms in (Figure 14). Our approach requires an integral number
of stipples-per-surfel, which we compute as 1+(ρ/kstip)∗kdark,
where kstip is a system-wide hand-tuned constant, and kdark is
a user-controllable value that determines the stipple density (and
hence the apparent “darkness” of the shading). For reference, we
use kstip = 50 and begin with kdark = 2, with model scale gener-
ally on the order of a unit cube.

Currently, we do not dynamically modify the surfel density due to
performance limitations. In our application, surfel density is also
less critical - primarily the only errors a user will see when zooming
in are visibility culling errors in the silhouettes. This is undesirable,
but the effect is not too severe, and in some sense is consistent with
our desire for “sketchy” output.

4.6 Limitations

Our technique rests heavily on the coarse base mesh. While we do
not require that the base mesh have high quality, it must have accu-
rate normals and generally reflect the overall shape of the surface.
The exact requirements are highly dependent on the scalar fields in



Figure 14: In the top row, the stipple density remains constant as
the camera zooms out, resulting in an increase in apparent darkness
from left to right. In the second row, the density is dynamically
adapted, resulting in a more uniform appearance at different scales.

use - roughly, it is necessary that any point on the implicit surface
be reachable by a monotonic gradient walk from the base mesh. In
addition, it is critical that the functional surface topology is cap-
tured by the base mesh. This is problematic, as an implicit-surface
meshing algorithm which both guarantees topology, and provides
real-time performance, has yet to be discovered. ShapeShop makes
no guarantees about mesh quality, relying on the user to increase
meshing accuracy when features are missed.

Likewise, there is no guarantee that a point which is on the mesh sil-
houette will correspond to a silhouette point on the smooth surface,
nor is it guaranteed that the projected point will lie on the smooth-
surface silhouette. Various iterative correction techniques can be
applied [Bremer and Hughes 1998; Stroila et al. 2007], however we
found no major visual difference when doing so.

Inter-frame coherence is a problem for any interactive pen-and-ink
technique. Since we rely completely on object-space techniques,
and store all generated data, contours and stippling are frame-
coherent when the base mesh is static (i. e., during rotation). How-
ever, the marching-cubes tessellation can change significantly dur-
ing model manipulation. This usually leaves contours unchanged,
but we have no general solution for maintaing stipple coherence.
Often the changes are local in nature, so when generating stipples
for a triangle we seed the random number generator using the tri-
angle vertex coordinates. This provides coherence in areas where
the mesh does not change. Another coherence issue occurs when
dynamically adapting the stipple resolution - since we take integer
steps, there is visible popping. These problems are unfortunate, but
do not seriously impair the usability of the system.

5 Discussion

Current sketch-based 3D modeling tools have focused mainly on
“input”, allowing designers to leverage their existing sketching
skills to enhance the modeling experience. With visual scaffold-
ing, we have begun to explore another dimension of the sketching
process. By simulating the visual “output” produced while sketch-
ing, we hope to both make computer-based sketching feel more like
pencil-and-paper sketching, while also providing superior visual-
ization and interaction capabilities. There are many other aspects
of visual scaffolding, such as coarse silhouettes and construction
lines (Figure 15), which remain to be explored.

Geometric massing and eraser marks are useful visual guides, and
may also result in significant interface improvements. Like most

solid modeling tools, one of the key limitations of ShapeShop’s in-
terface is that the model is defined by a tree which is difficult to vi-
sualize in-line with the shaded-surface display. Geometric massing
inherently exposes the set of underlying components which make
up the model, and could be adapted to support display (and direct
manipulation) of the model tree. Similarly, eraser marks provide a
tangible visual history of deleted objects, which could allow the de-
signer to selectively “undo” editing operations. Another direction
is the computation of geometric massing for existing mesh models
- recent work on ellipsoidal surface approximation may be a rea-
sonable starting point [Simari and Singh 2005].

We also describe a new approach to pen-and-ink depiction of
smooth surfaces, including algorithms for finding silhouette con-
tours, suggestive contours, surfel-based visibility testing, and stip-
pling. Our renderer is novel in part because it is the first pen-and-ink
technique that can be applied in real-time to smooth surfaces which
are being interactively deformed. We have had extensive experi-
ence using ShapeShop with this renderer - an early implementation
was released as part of ShapeShop v002 in July 2006. The result of
one editing session using the techniques described in this paper is
shown in Figure 16.

One key advantage of the pen-and-ink renderer is that it enables the
designer to visualize the actual smooth surface during interactive
editing, something which is not otherwise possible (accurate, high-
resolution surface meshing is completely non-interactive). Since
our techniques are directly applicable to NURBS and subdivision
surfaces, it would be interesting to explore pen-and-ink visualiza-
tion in interactive modeling tools for those representations.

We have not done extensive evaluation of the impact of visual scaf-
folding on interactive modeling, but plan on exploring this in the
future. The response of ShapeShop users to the pen-and-ink ren-
derer has been quite positive. After a demo video which con-
tained a pen-and-ink editing session was posted to the Internet,
users sent e-mails requesting that this feature be released (it al-
ready had been, but the menu item that enabled it was rather cryp-
tic). ShapeShop is publicly available, and can be downloaded at
http://www.shapeshop3d.com/. The implementation described in
this paper can be acquired by contacting the first author.

Figure 15: Sketching textbooks suggest a variety of other visual
scaffolding techniques, including stick figures (a), coarse geometric
silhouettes (b), and various types of construction lines to assist with
drawing complicated objects such as human faces (c).
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Figure 16: Visual construction history combined with interactive pen-and-ink contours on complex models. The left figure was interactively
modeled using our rendering pipeline. A variety of eraser marks show some of the ideas that the designer considered but discarded.
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A Suggestive Contours on Implicit Surfaces

The appendices of [DeCarlo et al. 2004] provide a thorough overview of the

differential geometry needed to describe suggestive contours. Only the key

equations are repeated here. We follow their notation, where the vectors

e1 and e2 are the perpendicular principal curvature directions at p, while

κ1 and κ2 are the associated principal curvatures. Then K = κ1κ2 is the

Gaussian curvature, and H = (κ1 +κ2)/2 is the mean curvature. We will

also require the directional derivatives of the principal curvatures along the

principal directions, denoted P , Q, S, and T :

P = De1
κ1, Q = De2

κ1, S = De1
κ2, T = De2

κ2 (7)

The main value that must be computed is the radial curvature κr :

κr = κ1 cos2 φ+κ2 sin2 φ (8)

where φ is the angle between w and e1. At points where κr = 0, the vector

w is re-written as w = ue1 + ve2 (where u = w · e1 and v = w · e2), and

the directional derivative is then:

Dwκr(w)

‖w‖
=

C(w,w,w)

‖w‖3
+2K cotθ (9)

where θ = cos−1(n ·v). The quantity C(w,w,w) is defined as

C(w,w,w)

‖w‖3
=

Pu3 +3Qu2v +3Suv2 +Tv3

‖w‖3
(10)

Our implementation considers implicit surfaces, hence we must express

these values in terms of partial derivatives of f . The curvature values can

be computed from the Hessian matrix of second partial derivatives [Hughes

2003]. Unfortunately our implicit surfaces only have analytic derivatives of

first order, because we apply a hierarchical spatial caching scheme which

approximates f with only C1 continuity, and certain composition operators

are also only C1 [Schmidt 2006]. Hence, we approximate the necessary

second partial derivatives by central-differencing the analytic ∇f .

The directional derivatives of principal curvatures require third partial deriv-

atives of f , which we have found to be too inaccurate when approximated

by finite-differencing. Instead, we take advantage of the fact that the “im-

plicit surface” is simply an iso-contour of a volumetric scalar field, and the

notion of “curvature” is defined at all points in this scalar field (assuming

it is continuous in an ε-ball around p). This allows us to directly estimate

Dxκ1 in any direction x by taking finite differences of κ1(p) along the line

p+ tx. For example, the quantity P = De1
κ1 is estimated as:

De1
κ1(p) =

κ1(p+ δe1)−2κ1(p)+κ1(p− δe1)

δ2
(11)

In our tests, this directional finite differencing results in suggestive contours

which are visually more stable and more closely resemble the suggestive

contours computed from mesh-based derivatives. However, we have not

performed any formal analysis of this technique.


