
A GPU Cluster Without the Clutter: A Drop-in Scalable
Programmable-Pipeline with Several GPUs and Only One PC

Eric Penner∗

University of Calgary
Ryan Schmidt†

University of Calgary
Sheelagh Carpendale‡

University of Calgary

Figure 1: Unmodified Direct3D samples running on an 8 projector wall. Fullscreen and windowed modes and cubemap support is shown.

Abstract

An interactive multi-display cluster-style rendering system is pre-
sented which runs on a single PC rather than a cluster of PCs. Many
Direct3D features, including support for a programmable pipeline,
are supported via a drop-in library replacement for Direct3D. While
the presented profiling results are bandwidth limited, PCI cards
have been used. It is expected that the greater bandwidth of PCI
express will produce results equivalent to those achieved with a ren-
dering cluster system.

CR Categories: I.3.2 [Graphics Systems]: Graphics systems—
Distributed/network graphics

Keywords: graphics cluster,distributed rendering, Direct3D, PCI
express, SLI

1 Introduction

Traditionally, multi-screen interactive and immersive rendering en-
vironments have been driven either by graphics supercomputers,
such as SGI’s Onyx systems, or by cluster-rendering systems, such
as Chromium [Humphreys et al. 2002]. Supercomputer-based sys-
tems provide excellent performance but come at a prohibitively
high cost. Cluster-based rendering systems distribute the rendering
load across multiple commodity PCs via high-speed networking,
achieving comparable results at a much lower cost.

∗e-mail: pennere@cpsc.ucalgary.ca
†e-mail:rms@cpsc.ucalgary.ca
‡e-mail:sheelagh@cpsc.ucalgary.ca

Our work questions the assumption that one PC lacks the power
to support graphics-intensive applications which require multiple
high-resolution displays, such as fully immersive environments and
display wall environments. To this end, we have developed a
cluster-style rendering system that utilizes a cluster of GPUs in
a PC, rather than a cluster of independent PCs. We have tested
the system with 10 displays and can theoretically support up to 20
displays at resolutions up to 38 megapixels, at interactive frame
rates. We also address providing basic support for the program-
mable GPU pipeline, which is increasingly utilized in 3D visual-
ization.

2 Related Work

During the last few years, feature rich single-display graphics inter-
faces with programmable pipelines have become available at a very
low cost, which has prompted research into the use of clusters of
commodity PCs to build one high-resolution interactive rendering
system [Bierbaum 2000; Staadt et al. 2003; Humphreys et al. 2002;
Tarault et al. 2005]. One of the primary challenges in building such
a system is the efficient sharing of data amongst all the PCs in the
cluster. Even with a gigabit network, this has proven to be a major
bottleneck for such systems, and much research has been devoted
to the efficient use of network bandwidth. Another major challenge
for cluster rendering systems is providing a regular application pro-
gramming interface (API) that makes existing applications easy to
port. Chromium [Humphreys et al. 2002] tackles this challenge by
providing a drop-in OpenGL library that hides the complexities of
the cluster while providing a standard OpenGL interface. However,
while it provides a regular interface to a fixed-function pipeline,
Chromium lacks a lot of OpenGL’s features due the problems in-
herent in running over a distributed network. It also provides little
support for a programmable pipeline, which has become an impor-
tant feature in recent years in creating visually realistic effects and
interactive applications.

To utilize the new PCI express interface for commodity PCs,
nVIDIA R©SLITMmakes use of several graphics cards in one PC.
This technology is used to make displays faster rather than to sup-
port more of them, but it shows that using several graphics cards
in one PC is feasible due to the dedicated bandwidth provided by



PCI express. While cluster rendering systems have become very
effective for most high-end rendering environments, little research
has questioned how much the cluster of PCs is actually needed with
the availability PCI express graphics cards and graphics cards that
support 2 or even 4 displays. The common reasoning is that one
PC is simply not powerful enough to support high-end rendering
tasks [Tarault et al. 2005].

3 Architecture

The new PCI Express (PCIe) bus can support several graphics
boards with a dedicated bandwidth of up to 8000MB/s per card
(PCIe x16). Most common PCs have one PCIe x16 slot or two x8
slots, and several more x1 slots which run at 500MB/s. Even at
x1 speeds, this is 4 times the bandwidth of the gigabit network-
ing commonly found in cluster-rendering systems, and the band-
width is dedicated for each PCIe card. Essentially, PCIe provides
a very high-bandwidth interconnect solution for cluster rendering,
however the cluster is built from multiple GPUs in a single com-
puter, rather than from multiple computers. We have developed a
drop-in library replacement for Direct3D that supports hardware-
accellerated rendering of existing applications across up to 20 dis-
plays. No modification of the original application is required. This
is achieved by transparently rendering to independent Direct3D
windows created for each display.

4 Implementation

Since our system currently only requires one PC, the management
of multiple GPUs is heavily simplified. For example, drawing calls
and state changes can be directly forwarded to each real interface
(Direct3D device). However, some areas still needed special atten-
tion. The system is flexible in that it supports any combination of
Direct3D-compatible video boards. We deal with the differences
between interfaces by exposing the ‘least common denominator’ of
features that are available on all the interfaces through our virtual
interface.

4.1 Distributing Data

When a resource (eg. vertexbuffer, texture, shader, etc.) is locked
for writing, we create a system memory scratch space that mimics
a real resource. When the resource is unlocked, the data is copied
to each real interface. The frame buffer is distributed such that each
interface holds only the necessary area of the framebuffer. This is
accomplished by intercepting the SetTransform() call and modify-
ing the projection matrix for each interface. For windowed acceler-
ation, a child window is dynamically positioned for each Direct3D
interface to properly clip the rendering on each display.

4.2 The Programmable Pipeline

Since the programmable pipeline has no notion of a projection ma-
trix, but rather only shader registers and code, a heuristic was devel-
oped to handle the projection matrix modification. Calls to SetVer-
texShaderConstant() are examined to determine if the content is
being set to 16 floats (likely to be a matrix), and if the last float in
the array is not equal to 1 (as is the case for perspective projection
matrices). This heuristic is not guaranteed to be correct, however
we found it sufficed for all Direct3D games and demos we tested.

In the future we would like to examine the actual shader instruc-
tions and apply the projection matrix update to the output position
register.

5 Results

After implementing just the basic functions and interfaces in the
Direct3D library we were able to run most of the Direct3D demos
on our 8-display wall using 4 dual-head GPUs. The frame rate was
almost identical to that found when the application ran on just one
interface. One major bottle-neck occurred when dynamic vertices
were used and vertex buffers were updated each frame. If the ap-
plication was bound by vertex streaming performance, then per-
formance scaled inversely with the number of interfaces used. As
noted, the PCI bus is very bandwidth limited. It is likely that the
enhanced bandwidth of the PCIe bus will significantly reduce this
bottleneck.

6 Conclusion

We have introduced a cluster-style scalable rendering system that
supports a fully featured fixed and programmable pipeline and can
support up to 20 displays. While our system cannot scale beyond
the available PCIe slots available in a given PC, we believe that with
2-headed or 4-headed cards, the 5 PCIe slots commonly available is
enough for many high-end rendering applications. By expanding on
our system and providing extensions beyond Direct3D’s function-
ality, it should be simple to use our library to support immersive
environments with passive stereo.

References

BIERBAUM, A. 2000. VR Juggler: A Virtual Platform for Virtual
Reality Application Development. Master’s thesis, Iowa State
University.

HUMPHREYS, G., HOUSTON, M., NG, Y., FRANK, R., AHERN,
S., KIRCHNER, P., AND KLOSOWSKI, J., 2002. Chromium:
A stream processing framework for interactive graphics on clus-
ters.

STAADT, O. G., WALKER, J., NUBER, C., AND HAMANN, B.
2003. A survey and performance analysis of software platforms
for interactive cluster-based multi-screen rendering. In EGVE
’03: Proceedings of the workshop on Virtual environments 2003,
ACM Press, New York, NY, USA, 261–270.

TARAULT, A., CONVARD, T., BOURDOT, P., AND VEZIEN, J.-
M. 2005. Cluster-based solution for virtual and augmented re-
ality applications. In GRAPHITE ’05: Proceedings of the 3rd
international conference on Computer graphics and interactive
techniques in Australasia and South East Asia, ACM Press, New
York, NY, USA, 293–296.

VOSS, G., BEHR, J., REINERS, D., AND ROTH, M. 2002. A
multi-thread safe foundation for scene graphs and its extension
to clusters. In EGPGV ’02: Proceedings of the Fourth Euro-
graphics Workshop on Parallel Graphics and Visualization, Eu-
rographics Association, Aire-la-Ville, Switzerland, Switzerland,
33–37.


