
Interactive Implicit Modeling With Hierarchical Spatial Caching

Ryan Schmidt
University of Calgary

Computer Science
rms@cpsc.ucalgary.ca

Brian Wyvill
University of Calgary

Computer Science
blob@cpsc.ucalgary.ca

Eric Galin
LIRIS - CNRS

Universit́e Claude Bernard Lyon 1
eric.galin@liris.cnrs.fr

Abstract

Complex implicit CSG models can be represented heirar-
chically as a tree of nodes (the BlobTree) . However, cur-
rent methods cannot be used to visualize changes made to
these models at interactive rates due to the large number
of potential field evaluations required. A heirarchical spa-
tial caching technique is presented which accelerates eval-
uations of the potential function. This method introduces
the concept of a caching node inserted into the implicit
model tree. Caching nodes store exact potential field val-
ues at the vertices of a voxel grid and rely on tri-linear and
tri-quadratic reconstruction filters to locally approximate
the potential field of a sub-tree. A lazy evaluation scheme is
used to avoid expensive pre-computation.

Polygonization timings with and without caching are
compared for a complex model undergoing manipulation
in an interactive modeling tool. An order-of-magnitude im-
provement in visualization time is achieved for complex im-
plicit models containing thousands of primitives.

1. Introduction

Interactive modeling is an iterative, essentially trial-and-
error process. Components of complex models are created
independently and then assembled. A significant portion of
the designer’s time is spent making small changes to model
parameters and examining the results. To facilitate this kind
of interaction, interactive visual feedback is necessary.

Implicit surface modeling has been hampered by the
lack of a fast interactive visualization method. Local-update
methods [10] are effective only if the affected portion of the
underlying model tree is inexpensive to evaluate. When as-
sembling the components of a complex model, computing
a single field value can require a very large number of leaf-
node field evaluations and composition operations.

Standard implicit surface visualization methods rely on
computing the value and gradient of the potential field many
times. In profiling implicit surface polygonizers, we observe

that over 95% of the computation time is spent in field value
evaluations. Potential field evaluation cost must be reduced
in order to provide interactive visual feedback for complex
models.

We propose a hierarchical spatial caching technique that
can be used to greatly decrease the number of tree nodes tra-
versed when computing a single field value or gradient. We
have implemented spatial caches using uniform 3D grids
and store field values at grid vertices. Tri-linear and tri-
quadratic reconstruction filters are applied to these cached
field values to locally approximate the potential field that
defines the implicit surface. Using this process the compu-
tational complexity of a single field evaluation for a cached
sub-tree is reduced fromO(n) to O(1), wheren refers to
the number of nodes in the subtree. Our results show that
this caching technique is capable of providing an order-of-
magnitude decrease in interactive polygonization time for
complex hierarchical skeletal implicit models.

The remainder of this paper proceeds as follows. In Sec-
tion 2 we describe related work, followed by the fundamen-
tals of the BlobTree modeling system in Section 3. We intro-
duce spatial caching nodes to the BlobTree and address the
spatial caching process in Section 4, followed by a short im-
plementation note (Section 5). Results and future work are
covered in Sections 6 and 7, respectively.

2. Related Work

A variety of implicit surface modeling systems have
been proposed in the last decade. These systems use var-
ious underlying implicit representations. A small sample
includes skeletal elements [21], levels sets [17], con-
volution surfaces [5] [14], adaptive distance fields [13]
variational implicit surfaces [19] and functional representa-
tions [18].

All of these systems can be used to model complex
shapes. Recent interactive sculpting [8] [4] [12] and sketch-
based modeling [15] [2] systems provide interactive visu-
alization rates while updating the implicit model. However,
fundamentally these systems construct global models. By

this we mean that the final implicit model is not composed
of smaller components that can be individually manipu-
lated, but rather a single volume. Components of a com-
plex model can be created individually but must eventually
be composited into the global volume. This step is essen-
tially irreversible, later local editing or animation of com-
ponents is difficult. Composition operators can instead be
applied in the context of a general implicit modeling sys-
tem, such as the BlobTree [21]. A BlobTree model with hi-
erarchical affine transformation nodes is essentially a scene
graph, permitting animation of model components.

Unfortunately, no existing implicit surface visualization
technique provides interactive performance for complex
BlobTree models. The key issue is that a functionally-
defined implicit surface must be converted to a discrete rep-
resentation, such as a triangle mesh or point set, to be vi-
sualized on commodity graphics hardware. This surface ex-
traction process is too computationally demanding to exe-
cute in real time as a designer interactively modifies a com-
plex implicit model.

One avenue for reducing surface extraction time is to in-
crementally compute a new surface discretization as local
changes are made by the designer. Some proposed tech-
niques include incremental octree subdivision of space [9],
adaptive marching triangles approaches [10] and surface
constrained particle systems [20]. Interactive performance
has been demonstrated for relatively simple models. How-
ever, incremental update schemes do not scale to complex
hierarchical models because the cost of evaluating even the
local update region becomes too expensive. In addition,
large-scale model changes are not accelerated.

Level-of-detail schemes for implicit surfaces [3] [14] at-
tempt to speed up potential field queries by dynamically re-
ducing the complexity of the implicit model tree. These
techniques reduce interactive visualization times when
lower levels of detail are used. Our technique can be used
in conjunction with these methods to reduce polygoniza-
tion time at all levels of detail.

Our goal is to enable interactive modeling of complex
implicit surfaces by accelerating potential field queries us-
ing hierarchical spatial caching. Hierarchical approximation
techniques have been applied to particle systems with good
results [11]. In the implicit domain spatial caching was used
to provide interactive manipulation of ray-linear and ray-
quadric implicit surfaces with “star-shaped” topology [1].

We use potential field function approximations similar
to [4], where the implicit model was stored as a set of poten-
tial field value samples in a uniform 3D grid. A smoothC1

continuous surface was extracted from these samples using
reconstruction filters. We adapt this technique to dynami-
cally construct spatial caches in our heirarchical model. We
approximate the potential field function whenever possible,
avoiding the complex tree traversals required when evaluat-

ing a potential field query.

3. The BlobTree

An implicit surface is mathematically defined as the
points in space that satisfy the equation

S = {p ∈ R
3, f(p) − T = 0}

wheref(p) denotes a scalar field function in space andT a
threshold value. The BlobTree model [21] is characterized
by a hierarchical combination of primitives organized in a
tree data-structure (Figure 1). The nodes of the tree include
blending, CSG and warping nodes, whereas the leaves are
skeletal elements.

Blend

Union

Difference

Figure 1. A simplified representation of the tree
structure of a bottle

Skeletal elements are defined by a skeleton, a distance
function and a potential function with compact support.
Therefore, every skeletal element has a bounded region of
influence in space. Every node incorporates a bounding box
so as to rapidly discard useless field function evaluations
when queries are performed in empty regions of space.

The computation of the field functionf(p) at a given
point in space is performed by recursively traversing the
BlobTree structure. The skeletal primitives at the leaves of
the tree return potential field values, which are combined by
operators at the internal tree nodes.

Field function evaluation is the most computationally de-
manding step in implicit surface visualization. Ray tracing
techniques require many field function evaluations along a
ray to isolate the roots and converge to the ray-implicit sur-
face intersection. Polygonization techniques also query the
BlobTree with many potential field function evaluations.
Therefore, it is crucial to be able to accelerate the computa-
tion of f(p) for interactive modeling applications.

4. Hierarchical spatial caching

Hierarchical spatial caching is integrated into the Blob-
Tree implicit modeling framework by introducing the
caching node. A caching nodeC is a unary opera-
tor with a single subtreeT . Each caching node stores a
set of exact potential field values determined by query-
ing it’s subtreeT . When evaluating the potential field of
T at a pointp inside the bounding box ofT , an approx-
imation fC(p) to the exact potential field valuefT (p) is
reconstructed from the cached potential values. The sub-
treeT is not traversed.

In the next sections we will describe in detail our imple-
mentation of caching nodes.

4.1. Data structure

In our system caching nodes are inserted above compo-
sition nodes. We specifically do not place a caching node
at the root of the tree, as this cache would require continu-
ous updating in an interactive system. Our caching nodes
store the exact potential field values at the nodes of a
voxel grid (Figure 2). In the remainder of this sectionpijk,
(i, j, k) ∈ [0, n]3 will refer to a point in the voxel grid. The
corresponding potential field value stored atpijk will be de-
noted asvijk = fT (pijk).

Difference

Blend

Union

Cache

Cache

(Parent Node)

Figure 2. A bottle model with some cache nodes.
The cache resolution for a subtreeT is dependent on
the subtree size

Each caching node has a local reference frame, allowing
the uniform grid to be rotated and translated in line with the
orientation of it’s subtreeT . This avoids expensive cache
recalculation when the entire subtree is manipulated.

When some descendent node of a caching node changes,
the bounding box of the descendent node is used to locally
invalidate cached values in all parent caches. Invalidation
is carried out at each cache by clearing avalid flag for all
cached values inside the bounding box.

4.2. Caching algorithm

Caching nodes are implemented using reconstruction fil-
ters that approximate the field functionfT (p) using nearby
exact field value samples(pijk, vijk) of the subtreeT .
Approximating the field function of the subtreefT (p) by
fC(p) is more efficient only if the necessary field value sam-
ples(pijk, vijk) have been pre-computed.

The steps taken by a cache node to computefC(p) are as
follows:

1. Transformp into local cache coordinatesp′

2. If the necessary field value samples(pijk, vijk) re-
quired to evaluatefC(p′) are cached, go to step 4

3. Cache any missing field value samples(pijk, vijk) by
evaluating the subtree.

4. EvaluatefC(p′)

4.3. Lazy evaluation

The initial field values used by spatial cache nodes to cal-
culate interpolated field values are found by evaluating the
child node’s field value. For complex subtrees these eval-
uations can be quite expensive. The overhead necessary to
create and maintain a fully-evaluated uniform grid has a sig-
nificant impact on interactivity.

Surface-following continuation methods [7] gener-
ally only evaluate field values at points near the surface.
We exploit this by introducing lazy evaluation into our spa-
tial cache nodes. Initially the spatial cache data structure
is empty. When a field value at some point inside the spa-
tial cache is requested, the cached values necessary to com-
pute the interpolated field value are evaluated and stored
for future use (Figure 3).

4.4. Potential field reconstruction

Tri-quadratic reconstruction filterThe tri-quadratic recon-
struction filter [4] is a separable,C1 continuous filter. Eval-
uation of the filter at a pointp requires 27 neighbouring
samples. The filter is an approximating filter and hence does
not necessarily pass through the sample points. We will first
describe the one-dimensional quadratic reconstruction fil-
ter, as the three-dimensional filter is defined in terms of 13
applications of the one-dimensional filter.

Evaluation of the 1D quadratic B-spline filterRq re-
quires 3 sample pointssi−1, si, andsi+1 to reconstruct a

Blend

Union

Cache
ijk

p

p

T pf ()ijk
Blend

Union

Cache

p

Blend

Union

Cache
ijk

p

p

C p
ijk

p

T pf ()ijk

f ()

Figure 3. Lazy evaluation process at three consecutive points. For the first two points (left and center images), missing
cache samples (empty circles) must be evaluated (filled circles) by traversing the subtree. All necessary cache samples
are evaluated for the right point, so the subtree is not traversed.

signal over the intervalI = [i − 0.5, i + 0.5]. Rq is a func-
tion of one parametert ∈ [0, 1] defined overI.

We define the 1D quadratic B-spline filterRq as

Rq (si−1, si, si+1, t) =
(

si−1 + si+1

2
− si

)

t2 + (si − si−1) t +
si−1 + si

2

We can now define the tri-quadratic reconstruction fil-
ter Rq3 . Evaluation of the filter at a 3D sample point re-
quires 27 neighbouring voxels. For a 3D sample pointp, we
find the nearest voxelvijk. The one-dimensional parame-
ter t is computed along each grid axis, these are denotedti,
tj , andtk. Rq3(p) is calculated by repeated applications of
Rq, defined in the the following set of equations.

Rq3(p) = Rq (Rj(k − 1),Rj(k),Rj(k + 1), tk)

Rj(ρ) = Rq (Ri(j − 1, ρ),Ri(j, ρ),Ri(j + 1, ρ), tj)

Ri(φ, ρ) = Rq

(

v(i−1)φρ, viφρ, v(i+1)φρ, ti
)

Hereφ andρ are placeholders.Ri(φ, ρ) is an evaluation
of Rq in the i direction, andRj(ρ) is an evaluation ofRq

in thej direction.

Reconstruction filter implementationWe reconstruct
a smooth scalar field by applying reconstruction fil-
ters to the potential field values stored in the uniform grid.
We have evaluated both tri-linear and tri-quadratic recon-
struction filters.

Tri-linear interpolation is very efficient, requiring only8
grid values. However, as shown in [16], the tri-linear fil-
ter is onlyC0 continuous. This causes significant gradient
error, resulting in shading discontinuities (Figure 4).

The tri-quadratic reconstruction filter produces a smooth
gradient, however it is significantly more expensive than

the tri-linear filter and requires 27 adjacent potential field
value samples. High-frequency details of the original po-
tential value field can also be lost due to the approximating
property of the filter.

Polygonization times with the tri-quadratic filter were
approximately twice the tri-linear filter times. However, us-
ing tri-linear reconstruction for field values and tri-quadratic
reconstruction for gradients was only 10% more expensive
than a pure tri-linear approach. The resulting mesh is vi-
sually much smoother (Figure 4). We found this to be the
best trade-off between polygonization time and appearance
of surface smoothness.

Figure 4. Tri-linear gradient (left image) and tri-
quadratic gradient (right image).

Figure 5. Varying cache resolution with tri-quadratic value reconstruction. There are three cached components in this
model - upper body, lower body, and left hand. Cache resolution for each component is varied from left to right 163,
323, 643, and 1283.

4.5. Cache resolution

The accuracy of the potential field reconstruction is en-
tirely dependent on the uniform grid resolution. In our
current implementation the resolution of a uniform grid
caching a subtreeT is dependent on the axis-aligned bound-
ing box of the subtree and a user-defined grid resolutionr.
Let s denote the longest side of the bounding box ofT . The
size of each grid cell is then defined as

c = s/r

If some descendent of the cache nodeC is modifed, the
bounding box ofT will change. In this case we compute
a new cell sizec′. If the ratioc′/c is greater than2 or less
than0.5, the current cache is destroyed. The cache will be
automatically re-populated by the lazy evaluation scheme.
This prevents cache resolution both from getting too low,
which would result in a coarse approximation of the sur-
face, as well as from getting too high and wasting memory.

The effect of varying the grid resolution parameterr
is demonstrated in Figure 5. In these images we use tri-
quadratic reconstruction for both the value and gradient, as
it generates smoother surfaces at low cache resolutions. Ex-
amining the left hand component of the model is instruc-
tive. Even at a grid resolution of163, the hand is reason-
ably well-represented for this viewing distance, while643

is clearly too coarse for the body components. These im-
ages indicate that an automatic cache level-of-detail algo-
rithm could reduce both memory use and computation time.

One potential issue with caching nodes is a loss of sharp
features. The potential field around several sharp features
is shown in Figure 6. The image pixels are colored by cal-

culatingsin(11πf(p)) along a plane slice and converting
the result to grayscale; pixels near the iso-value0.5 are
colored red. At this resolution tri-linear reconstructionis
capable of properly reconstructing sharp features that lay
on voxel edges. Tri-quadratic reconstruction smooths out
all sharp features. The reconstruction accuracy improves in
both cases if cache resolution is increased.

Figure 6. Sharp feature reconstruction using 1283

cache and (a) Tri-linear reconstruction, (b) tri-
quadratic reconstruction, and (c) non-cached evalua-
tion. Thin line indicates iso-surface (See Color Plate).

5. Implementation details

Uniform 3D grids can require significant amounts
of memory. We store our cached field values in single-
precision floating point, so a 1283 cache requires 8MB
of memory. Current hardware limitations prevent stor-

ing a significant number of fixed caches at this resolu-
tion. In addition, the volume represented by a single cache
can expand, making a fixed grid data structure undesir-
able.

To reduce memory usage we implement our uniform 3D
grid using a blocked memory scheme. We divide the uni-
form grid intok × k × k blocks of voxels, wherek is the
block resolution. A voxel block is allocated only when one
of the voxels it contains is needed to compute a field value.
The blocks are quickly identified using a 30-bit hash, us-
ing 10 bits per integer grid axis coordinate. This limits the
total grid size to(1024 · k)3 voxels.

Continuation methods for polygonizing an implicit sur-
face [7] are designed to follow the surface. Most field eval-
uations are near the surface, hence the required voxels will
also be near the surface. In this case our data structure re-
duces memory use while still permitting efficient evaluation
of the reconstruction filters.

The block resolution parameterk affects both memory
usage and interactive polygonization time. Ask decreases
it becomes increasingly expensive to find and invalidate the
grid blocks affected by some interactive operation. In our
tests we found good results with grid resolutionk = 8. Re-
ducingk to 4 cut our average memory usage by approxi-
mately20%, but increased update times by approximately
25%.

Current workstation processors contain several levels of
hardware memory cache to reduce memory access latency.
The traditional static allocation of a large 3D uniform grid
causes frequent cache misses, particularly when accessing
adjacent voxels along the z axis. Our blocked allocation
scheme potentially increases processor cache coherency,
however this effect is difficult to isolate.

Memory requirements can be reduced even further by us-
ing an encoding scheme, at the expense of some reconstruc-
tion accuracy. The range of potential field values that can
occur in our system is small. Memory usage can be reduced
50 to 75 percent by encoding floating point values as one or
two-byte integers. This technique is slightly more computa-
tionally expensive and decreases accuracy, so we do not use
it in our evaluation.

6. Results

Cache efficiency is evaluated by comparing polygoniza-
tion times between two versions of the same model, one
with cache nodes and one without. We use an optimized
version of the implicit surface polygonizer described in
[6] with the optional cubical decomposition enabled. When
computing a mesh vertex on a cube edge,10 bisections are
performed to locate the implicit surface.

The software is compiled with Microsoft Visual Studio
.NET 2003 in Release mode with default optimization flags.

All timings are performed on an Intel 1.6Ghz Mobile Pen-
tium 4 processor with 512MB of RAM.

6.1. Medusa model

We have tested the system with a complex hierarchi-
cal Medusa model. The model is composed of 9490 point
skeletal elements segmented into 7 major components. The
names and point counts are shown in the table below.

Tail Body Chest Left Hand Neck Head Hair

810 840 40 570 20 700 6510

Each major component is modeled as a blend of point skele-
tal elements distributed along a set of splines. All the points
along each individual spline are grouped together into a sin-
gle optimized blend node to avoid excessive tree traversal.

A caching node with a resolution of1283 voxels was
placed above each major component in the model tree.
We approximate potential field reconstruction accuracy by
comparing reconstructed and exact field values at triangle
mesh vertices. Using this method, the mean tri-linear re-
construction error for the Medusa model with1283 voxel
caches is estimated to be approximately3%. The error
is concentrated in high-frequency regions, particularly the
head. We have not devised a global measure of reconstruc-
tion accuracy, however it is suspected that the global error
will be similar to the near-surface error because the cache
spacing is uniform.

6.2. Static polygonization time

We compare polygonization times for the Medusa model
with and without caching nodes. All caches are cleared be-
fore each polygonization. Our results are shown in Table 1.

Polygonization time without caching increases by ap-
proximately a factor of 4 when resolution doubles.
Polygonization time with caching is initially slower than
without because we require8 voxels to compute a sin-
gle tri-linear interpolation. Subsequently, polygonization
time reduces as the cache is populated. The ratio be-
tween cached times at consecutive resolutions decreases
because more cached voxels are re-used. At5123 poly-
gonizer resolution, approximately33% of all cache vox-
els have been evaluated. The total memory allocated
for caches is approximately22MB at a block resolu-
tion of 8 and 16MB at a block resolution of4 (see sec-
tion 5).

We have repeated these tests with a variety of other mod-
els constructed from complex skeletal elements. Similar re-
sults were observed.

Cubes Cache No Cache Ratio

323 5.77 4.90 0.8×

643 10.34 14.36 1.4×

1283 17.40 51.97 3×

2563 29.23 199.37 6.5×

5123 49.83 809.66 16×

Table 1. Comparison of cached and non-cached
polygonization times (in seconds) for Medusa model
at different polygonization resolutions.

6.3. Interactive polygonization time

We have shown that caching nodes are an effec-
tive means for decreasing static polygonization time.
However, the main benefit of caching nodes becomes ap-
parent when interactively manipulating model compo-
nents. Figure 7 compares several different tests we per-
formed on the Medusa model with and without caching
nodes.

In each test we simulated translation of the Medusa head
component. The head was moved25 steps towards the tail,
then25 steps back to the original position. Along this path
the head intersects all other components of the model. An
initial polygonization was computed before running each
test, hence the cache begins partially evaluated. Polygonizer
resolution was fixed at603 cubes, based on the initial model
bounding box.

Polygonization time is relatively constant for the non-
cached cases, which is expected. With caching nodes the
polygonization time rapidly drops over the first few frames.
Many of the caching node voxels for the head component
are being evaluated over these frames. During the rest of the
downward path small numbers of potential field values are
cached for other components as the head intersects them.
This results in a relatively stable polygonization time. At
step25 the upward path begins. The stable polygonization
time decreases at this point because no non-cached poten-
tial field evaluations are necessary.

Tests were performed with and without the hair compo-
nent. The first few frames are computed more quickly with-
out the hair component, however the stable polygonization
time is essentially identical in both cases. This comparison
shows that after the caches are populated, polygonization
time is insensitive to the underlying model complexity and
depends primarily on surface complexity.

Finally, polygonizer resolution is doubled to1203 cubes.
The cached polygonization converges to a stable time of ap-

proximately1.25 seconds per frame. Non-cached timings
were over50 seconds per frame. After completing this test,
the total memory allocated by the caches is approximately
25MB for both polygonizer resolutions (603 and1203). As
shown in the previous section,22MB of this memory is al-
located during the first polygonization.

Similar results have been observed while repeating these
tests with other model components, and other models com-
posed of skeletal primitives more complex than point prim-
itives.

0

2

4

6

8

10

12

14

1 5 9 13 17 21 25 29 33 37 41 45 49

Timestep
P

o
ly

g
o

n
iz

at
io

n
 T

im
e

in
 S

ec
o

n
d

s

Cached Cached (No Hair) Cached (2x Resolution)

No Cache No Cache (No Hair)

Figure 7. Comparison of cached and non-cached
polgyonization times recorded while simulating inter-
active translation of Medusa head.

6.4. Local update polygonization

A common technique for improving interactive visual-
ization time in implicit modeling systems is to only re-
polygonize the model in areas that have been modified. Sev-
eral tests with and without caching nodes have been per-
formed to simulate this behavior using our cubical decom-
position polygonizer [6]. The polygonization region is re-
stricted using the bounding box of model components that
have changed. Because the cubes used are a subset of those
used for full polygonization, the same triangles are gener-
ated and we can directly compare times between the two
cases. In our results we do not include the constant time nec-
essary to stitch the update region to the existing mesh. Note
that cache memory usage is identical to the full polygoniza-
tion case discussed in the previous section.

The interactive assembly task simulation described in
Section 6.3 was performed using local updates. The average

timing improvements are shown in Table 2. Results from
another test are also shown, in which we loaded only the
hair component and moved a small point skeletal element
through it. The point bounding box covers less than5% of
the total hair volume.

Test Cubes Improvement

Head Translation 603 7×

Head Translation 1203 12×

Point / Hair Test 603 30×

Point / Hair Test 1203 47×

Table 2. Comparison of cached and non-cached
polygonization times for local-update polygonization
tests.Cubescolumn refers to polygonizer resolution,
Improvementcolumn shows number of times speed-
up with caching nodes.

7. Conclusion and future work

We have described a new type of BlobTree node, the spa-
tial caching node. Our caching node approximates the po-
tential field of the caching node subtree using a set of exact
potential field value samples. The approximation process
reduces potential field evaluation complexity for the sub-
tree fromO(n) to O(1), wheren refers to the number of
nodes in the subtree.

We implement caching nodes using uniform grids
with subtree-dependent resolution. Our implementa-
tion uses tri-linear reconstruction for potential field values
and tri-quadratic reconstruction for potential field gradi-
ents. This combination of reconstruction filters produces
visually smooth meshes suitable for interactive visualisa-
tion in an implicit modeling tool. Complex hierarchical
implicit models created using our interactive model-
ing tool are shown in figures 8 and 9 (see Color Plate).

We demonstrate an order-of-magnitude decrease
in polygonization time when inserting caching nodes
into a complex hierarchical BlobTree model contain-
ing over 9000 point primitives. Our analysis suggests that
caching nodes are particularly effective when used in con-
junction with local-update polygonization.

Interactive visualization benefits both shape mod-
eling and animation prototyping. We anticipate that
caching nodes will provide a similar performance ben-
efit with other implicit surface operations, including

ray-tracing, collision detection and other polygoniza-
tion schemes.

There are a variety of avenues for future work on caching
nodes. A primary concern is memory management. Our cur-
rent implicit modeling tool requires the model designer to
manage placement of caching nodes. Ideally, an interactive
modeling system would infer appropriate cache placement
and resolution based on the designer’s actions.

The cost of cache updates can be significantly reduced by
dynamically re-structuring the BlobTree hierarchy. In par-
ticular, certain composition operators (such as the additive
blend) permit the contribution of a particular child node to
be directly ’subtracted’. Several complex operators with this
property are developed in [1]. Adaptation of these operators
to BlobTree skeletal primitives could result in significantly
decreased cache update times.

We use a blocked uniform grid scheme to minimize com-
putational overhead. It may be acceptable to trade some ef-
ficiency for higher reconstruction accuracy. Alternate spa-
tial data structures such as multi-grid methods may provide
this trade-off.

References

[1] E. Akleman and J. Chen. Constant Time Updateable Oper-
ations for Implicit Shape Modeling.Proceedings of Implicit
Surfaces 99, 73–80, 1999.

[2] B. Araújo and J. Jorge. BlobMaker: Free-Form Modeling
with Variational Implicit Surfaces.Comunicaç̃ao ao 12o En-
contro Portugûes de Computaç̃ao Gráfica, 2003.

[3] A. Barbier, E. Galin and S. Akkouche. Complex Skeletal Im-
plicit Surfaces with Levels of Detail.Proceedings of WSCG,
12(4), 35–42, 2004.

[4] L. Barthe, B. Mora, N. Dodgson and M. Sabin. Interactive
implicit modelling based onC1 reconstruction of regular
grids. International Journal of Shape Modeling, 8(2), 99–
117, 2002.

[5] J. Bloomenthal and K. Shoemake. Convolution Surfaces.
Computer Graphics (Proceedings of SIGGRAPH 91), 25(4),
251–256, 1991.

[6] J. Bloomenthal. An Implicit Surface Polygonizer.Graphics
Gems IV, Academic Press Professional Inc., 324–349, 1994.

[7] J. Bloomenthal (Ed.). Introduction to Implicit Surfaces. Mor-
gan Kaufmann, ISBN 1-55860-233-X, 1997.

[8] E. Ferley, M.-P. Cani, J.-D. Gascuel. Practical Volumetric
Sculpting.The Visual Computer, 16(8), 469–480, 2000.

[9] E. Galin and S. Akkouche. Incremental Polygonization of
Implicit Surfaces,Graphical Models, 62, 19–39, 2000.

[10] S. Akkouche and E. Galin. Adaptive Implicit Surface
Polygonization using Marching Triangles.Computer Graph-
ics Forum, 20(2), 67–80, 2001.

[11] L. Greengard. The Rapid Evaluation of Potential Fields in
Particle Systems. The MIT Press, ISBN 0-26207-110-X,
1988.

[12] R. Perry, S. Frisken. Kizamu: A System for Sculpting Digital
Characters.Proceedings of SIGGRAPH 2001, 47–56, 2001.

[13] S. Frisken, R. Perry, A. Rockwood, T. Jones. Adaptively
Sampled Distance Fields: A General Representation of
Shape for Computer Graphics.Proceedings of SIGGRAPH
2000, 249–254, 2000.

[14] S. Hornus, A. Angelidis and M.-P. Cani. Implicit Modeling
using Subdivision-curves.The Visual Computer, 2(3), 94–
101, 2003.

[15] O. Karpenko, J. Hughes and R. Raskar. Free-Form Sketch-
ing with Variational Implicit Surfaces.Computer Graphics
Forum, 21(3), 585–594, 2002.

[16] S. Marschner and R. Lobb. An Evaluation of Reconstruction
Filters for Volume Rendering.Proceedings of Visualization
1994, 100–107, 1994.

[17] K. Museth, D. Breen, R. Whitaker and A. Barr. Level Set
Surface Editing Operators.ACM Transactions on Graphics,
21(3), 330–338, 2002.

[18] A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko. Function
representation in geometric modeling: concepts, implemen-
tation and applications.The Visual Computer, 11(8), 429–
446, 1995.

[19] G. Turk and J. O’Brien. Shape Transformation Using Vari-
ational Implicit Functions.Proceedings of SIGGRAPH 99,
335–342, 1999.

[20] A. Witkin and P. Heckbert. Using Particles to Sample and
Contol Implicit Surfaces.Proceedings of SIGGRAPH 94,
269–278, 1994.

[21] B. Wyvill, A. Guy and E. Galin. Extending the CSG Tree
(Warping, Blending and Boolean Operations in an Im-
plicit Surface Modeling System).Computer Graphics Fo-
rum, 18(2), 149–158, 1999.

Figure 8. Medusa model with interactive modifica-
tions. Characters are composed of point primitives
placed on the surface with mouse using interactive
ray-surface intersection.

Figure 9. Complex hierarchical implicit models con-
structed interactively with spatial caching nodes. The
cup and medusa head were imported from an existing
BlobTree modeling system and interactively assem-
bled. The mouse character was created from scratch
in under an hour.

Figure 6. Sharp feature reconstruction using 1283

cache and (a) Tri-linear reconstruction, (b) tri-
quadratic reconstruction, and (c) non-cached evalua-
tion. Thin red line indicates iso-surface.

