Interactive Implicit Modeling With Hierarchical Spatial Caching

Ryan Schmidt Brian Wyvill Eric Galin
University of Calgary University of Calgary LIRIS - CNRS
Computer Science Computer Science Universi€é Claude Bernard Lyon 1
rms@cpsc.ucalgary.ca blob@cpsc.ucalgary.ca eric.galin@liris.cnrs.fr
Abstract that over 95% of the computation time is spent in field value

evaluations. Potential field evaluation cost must be redluce
Complex implicit CSG models can be represented heirar- in order to provide interactive visual feedback for complex
chically as a tree of nodes (the BlobTree) . However, cur- models.
rent methods cannot be used to visualize changes made to We propose a hierarchical spatial caching technique that
these models at interactive rates due to the large nhumbercan be used to greatly decrease the number of tree nodes tra-
of potential field evaluations required. A heirarchical spa versed when computing a single field value or gradient. We
tial caching technique is presented which accelerates-eval have implemented spatial caches using uniform 3D grids
uations of the potential function. This method introduces and store field values at grid vertices. Tri-linear and tri-
the concept of a caching node inserted into the implicit quadratic reconstruction filters are applied to these @che
model tree. Caching nodes store exact potential field val- field values to locally approximate the potential field that
ues at the vertices of a voxel grid and rely on tri-linear and defines the implicit surface. Using this process the compu-
tri-quadratic reconstruction filters to locally approxirtea tational complexity of a single field evaluation for a cached
the potential field of a sub-tree. A lazy evaluation scheme issub-tree is reduced from(n) to O(1), wheren refers to
used to avoid expensive pre-computation. the number of nodes in the subtree. Our results show that
Polygonization timings with and without caching are this caching technique is capable of providing an order-of-
compared for a complex model undergoing manipulation magnitude decrease in interactive polygonization time for
in an interactive modeling tool. An order-of-magnitude im- complex hierarchical skeletal implicit models.
provement in visualization time is achieved for complexim- The remainder of this paper proceeds as follows. In Sec-
plicit models containing thousands of primitives. tion 2 we describe related work, followed by the fundamen-
tals of the BlobTree modeling system in Section 3. We intro-
duce spatial caching nodes to the BlobTree and address the
. spatial caching process in Section 4, followed by a short im-
1. Introduction plementation note (Section 5). Results and future work are

. _ !) , , covered in Sections 6 and 7, respectively.
Interactive modeling is an iterative, essentially triata

error process. Components of complex models are created

independently and then assembled. A significant portion of 2. Related Work

the designer’s time is spent making small changes to model

parameters and examining the results. To facilitate timd ki A variety of implicit surface modeling systems have

of interaction, interactive visual feedback is necessary. been proposed in the last decade. These systems use var-
Implicit surface modeling has been hampered by the ious underlying implicit representations. A small sample

lack of a fast interactive visualization method. Local-afgd includes skeletal elements[21], levels sets[17], con-

methods [10] are effective only if the affected portion afth volution surfaces[5][14], adaptive distance fields[13]

underlying model tree is inexpensive to evaluate. When as-variational implicit surfaces [19] and functional reprete

sembling the components of a complex model, computing tions [18].

a single field value can require a very large number of leaf- All of these systems can be used to model complex

node field evaluations and composition operations. shapes. Recent interactive sculpting [8][4][12] and dketc
Standard implicit surface visualization methods rely on based modeling [15][2] systems provide interactive visu-

computing the value and gradient of the potential field many alization rates while updating the implicit model. However

times. In profiling implicit surface polygonizers, we obger fundamentally these systems construct global models. By

this we mean that the final implicit model is not composed ing a potential field query.

of smaller components that can be individually manipu-

lated, but rather a single volume. Components of a com-

plex model can be created individually but must eventually 3. The BlobTree

be composited into the global volume. This step is essen-

tially irreversible, later local editing or animation of e An implicit surface is mathematically defined as the
ponents is difficult. Composition operators can instead be points in space that satisfy the equation

applied in the context of a general implicit modeling sys-

tem, such as the BlobTree [21]. A BlobTree model with hi- S={peR? f(p)—T =0}
erarchical affine transformation nodes is essentially aesce
graph, permitting animation of model components. wheref(p) denotes a scalar field function in space dha

Unfortunately, no existing implicit surface visualizatio threshold value. The BlobTree model[21] is characterized
technique provides interactive performance for complex by a hierarchical combination of primitives organized in a
BlobTree models. The key issue is that a functionally- tree data-structure (Figure 1). The nodes of the tree irclud
defined implicit surface must be converted to a discrete rep-blending, CSG and warping nodes, whereas the leaves are
resentation, such as a triangle mesh or point set, to be viskeletal elements.
sualized on commodity graphics hardware. This surface ex-
traction process is too computationally demanding to exe-
cute in real time as a designer interactively modifies a com-

. .. Union
plex implicit model. / \ B
One avenue for reducing surface extraction time is to in- E Blend K
crementally compute a new surface discretization as local f

changes are made by the designer. Some proposed tech-
nigues include incremental octree subdivision of space [9]

adaptive marching triangles approaches[10] and surface / \
constrained particle systems[20]. Interactive perforoean Ky\ e
has been demonstrated for relatively simple models. How- o

ever, incremental update schemes do not scale to complex

hierarchical models because the cost of evaluating even the

local update region becomes too expensive. In addition, Figure 1. A simplified representation of the tree
large-scale model changes are not accelerated. structure of a bottle

Level-of-detail schemes for implicit surfaces [3][14] at-
tempt to speed up potential field queries by dynamically re-
ducing the complexity of the implicit model tree. These
techniques reduce interactive visualization times when Skeletal elements are defined by a skeleton, a distance
lower levels of detail are used. Our technique can be usedfunction and a potential function with compact support.
in conjunction with these methods to reduce polygoniza- Therefore, every skeletal element has a bounded region of
tion time at all levels of detail. influence in space. Every node incorporates a bounding box

Our goal is to enable interactive modeling of complex SO as to rapidly discard useless field function evaluations
implicit surfaces by accelerating potential field queries u When queries are performed in empty regions of space.
ing hierarchical spatial caching. Hierarchical approxioma The computation of the field functiofi(p) at a given
technigues have been applied to particle systems with goodpoint in space is performed by recursively traversing the
results[11]. In the implicit domain spatial caching wasdise BlobTree structure. The skeletal primitives at the leavies o
to provide interactive manipulation of ray-linear and ray- the tree return potential field values, which are combined by
guadric implicit surfaces with “star-shaped” topology.[1] operators at the internal tree nodes.

We use potential field function approximations similar Field function evaluation is the most computationally de-
to[4], where the implicit model was stored as a set of poten- manding step in implicit surface visualization. Ray tragin
tial field value samples in a uniform 3D grid. A smodft techniques require many field function evaluations along a
continuous surface was extracted from these samples usingay to isolate the roots and converge to the ray-implicit sur
reconstruction filters. We adapt this technique to dynami- face intersection. Polygonization techniques also queesy t
cally construct spatial caches in our heirarchical mod&l. W BlobTree with many potential field function evaluations.
approximate the potential field function whenever possible Therefore, it is crucial to be able to accelerate the computa
avoiding the complex tree traversals required when evaluat tion of f(p) for interactive modeling applications.

4. Hierarchical spatial caching When some descendent node of a caching node changes,

the bounding box of the descendent node is used to locally
Hierarchical spatial caching is integrated into the Blob- invalidate cached values in all parent caches. Invalidatio

Tree implicit modeling framework by introducing the is carried out at each cache by clearingadid flag for all

caching node. A caching nod€ is a unary opera- cached values inside the bounding box.

tor with a single subtred . Each caching node stores a

set of exact potential field values determined by query- 4.2, Caching algorithm

ing it's subtreeZ. When evaluating the potential field of

7 at a pointp inside the bounding box df’, an approx- Caching nodes are implemented using reconstruction fil-

imation fc(p) to the exact potential field valugr(p) is ters that approximate the field functigia (p) using nearby

reconstructed from the cached potential values. The sub-exact field value sample§p,;;,vi;r) of the subtreeT.

tree7 is not traversed. Approximating the field function of the subtreie-(p) by
In the next sections we will describe in detail our imple- fc(p) is more efficient only if the necessary field value sam-
mentation of caching nodes. ples(p;;x, vijr) have been pre-computed.
The steps taken by a cache node to comgte) are as
follows:

4.1. Data structure
1. Transfornp into local cache coordinates

In our system caching nodes are inserted above compo- 2. If the necessary field value Samp'éﬂ%jk,vijk) re-

sition nodes. We specifically do not place a caching node quired to evaluatg (p’) are cached, go to step 4
at the root of the tree, as this cache would require continu-

ous updating in an interactive system. Our caching nodes
store the exact potential field values at the nodes of a

3. Cache any missing field value samplps;;,, vi;x) by
evaluating the subtree.

voxel grid (Figure 2). In the remainder of this sectipy,, 4. Evaluatefc(p’)
(i, 7, k) € [0,n]® will refer to a point in the voxel grid. The _
corresponding potential field value storeghgy, willbe de- 4.3. Lazy evaluation

noted a; ik = fr(P;ix)-
" 7(Pi) The initial field values used by spatial cache nodes to cal-

culate interpolated field values are found by evaluating the
(Parent Node) child node’s field value. For complex subtrees these eval-
uations can be quite expensive. The overhead necessary to
create and maintain a fully-evaluated uniform grid has a sig
nificant impact on interactivity.

Surface-following continuation methods[7] gener-

, ally only evaluate field values at points near the surface.
és ff | We exploit this by introducing lazy evaluation into our spa-
Blend tial cache nodes. Initially the spatial cache data strectur
j // \ is empty. When a field value at some point inside the spa-
| A Difference tial cache is requested, the cached values necessary to com-
w ' / \ pute the interpolated field value are evaluated and stored
éa y 3 for future use (Figure 3).
O i
- €o 0o

4.4. Potential field reconstruction

Tri-quadratic reconstruction filterThe tri-quadratic recon-
struction filter [4] is a separabl€;* continuous filter. Eval-
uation of the filter at a poinp requires 27 neighbouring
samples. The filter is an approximating filter and hence does
not necessarily pass through the sample points. We will first
describe the one-dimensional quadratic reconstructien fil
Each caching node has a local reference frame, allowingter, as the three-dimensional filter is defined in terms of 13
the uniform grid to be rotated and translated in line with the applications of the one-dimensional filter.
orientation of it's subtre€ . This avoids expensive cache Evaluation of the 1D quadratic B-spline filtét, re-
recalculation when the entire subtree is manipulated. quires 3 sample points;_;, s;, ands;; to reconstruct a

Figure 2. A bottle model with some cache nodes.
The cache resolution for a subtrgeis dependent on
the subtree size

p p p
b | | B,
Cache™ Cache Cache
Union // Union TN Union fc®) }(
({ | \
AN AN B A
Blend \| Blend / §E Blend

} i

e
fT (B,i}k;:,,) y

/N

s (j

2N

R

I |
iy)

/N
L (j

Figure 3. Lazy evaluation process at three consecutive points. [edirgt two points (left and center images), missing
cache samples (empty circles) must be evaluated (filletesirby traversing the subtree. All necessary cache samples
are evaluated for the right point, so the subtree is not tsaek

signal over the interval = [i — 0.5, ¢ + 0.5]. R, is a func-
tion of one parameterc [0, 1] defined ovefZ.
We define the 1D quadratic B-spline filt&, as

(

We can now define the tri-quadratic reconstruction fil-
ter R,s. Evaluation of the filter at a 3D sample point re-
quires 27 neighbouring voxels. For a 3D sample ppinte
find the nearest voxel;;;,. The one-dimensional parame-
tert is computed along each grid axis, these are dengfed
tj, andty. R,s(p) is calculated by repeated applications of
R4, defined in the the following set of equations.

(p) = Rq (Rj(k - 1)ﬂRj(k)aRJ(k + 1)7tk)
](p) Rq (Ri(j*1,p),Ri(j,P),Ri(j+1,P),tj)
Ri(¢,p) =Ry (”(i—l)m)’ ”i¢pvv(i+1)¢p»ti)

Ry (Si—1,5i,8iy1,t) =
3—1+8+18> 24 (51— si) 1+

2

Si—1+ 8;
2

Ry

Here¢ andp are placeholdersR;(¢, p) is an evaluation
of R, in thei direction, andR;(p) is an evaluation ofz,
in the j direction.

Reconstruction filter implementatioe reconstruct

a smooth scalar field by applying reconstruction fil-

ters to the potential field values stored in the uniform grid.
We have evaluated both tri-linear and tri-quadratic recon-
struction filters.

Tri-linear interpolation is very efficient, requiring on8y
grid values. However, as shown in [16], the tri-linear fil-
ter is only C° continuous. This causes significant gradient
error, resulting in shading discontinuities (Figure 4).

The tri-quadratic reconstruction filter produces a smooth
gradient, however it is significantly more expensive than

the tri-linear filter and requires 27 adjacent potentialdfiel
value samples. High-frequency details of the original po-
tential value field can also be lost due to the approximating
property of the filter.

Polygonization times with the tri-quadratic filter were
approximately twice the tri-linear filter times. Howeves-u
ing tri-linear reconstruction for field values and tri-quatit
reconstruction for gradients was only 10% more expensive
than a pure tri-linear approach. The resulting mesh is vi-
sually much smoother (Figure 4). We found this to be the
best trade-off between polygonization time and appearance
of surface smoothness.

Figure 4. Tri-linear gradient (left image) and tri-
quadratic gradient (right image).

Figure 5. Varying cache resolution with tri-quadratic value reconstion. There are three cached components in this
model - upper body, lower body, and left hand. Cache resoiftir each component is varied from left to right®16
32%,64%, and 128.

4.5. Cache resolution culating sin(117 f(p)) along a plane slice and converting
the result to grayscale; pixels near the iso-value are
The accuracy of the potential field reconstruction is en- colored red. At this resolution tri-linear reconstructiin
tirely dependent on the uniform grid resolution. In our capable of properly reconstructing sharp features that lay
current implementation the resolution of a uniform grid on voxel edges. Tri-quadratic reconstruction smooths out
caching a subtreg is dependent on the axis-aligned bound- all sharp features. The reconstruction accuracy impraves i
ing box of the subtree and a user-defined grid resolution both cases if cache resolution is increased.
Let s denote the longest side of the bounding bog ofThe
size of each grid cell is then defined as

c=s/r

If some descendent of the cache natlés modifed, the

bounding box of7” will change. In this case we compute

a new cell size’. If the ratioc’/c is greater thar? or less

than0.5, the current cache is destroyed. The cache will be } } }

automatically re-populated by the lazy evaluation scheme. - -

This prevents cache resolution both from getting too low, (a) (b) (©

which would result in a coarse approximation of the sur-

face, as well as from getting too high and wasting memory. Figure 6. Sharp feature reconstruction using 128
The effect of varying the grid resolution parameter cache and (a) Tri-linear reconstruction, (b) tri-

is demonstrated in Figure 5. In these images we use tri- quadratic reconstruction, and (c) non-cached evalua-

quadratic reconstruction for both the value and gradient, a tion. Thin line indicates iso-surface (See Color Plate).

it generates smoother surfaces at low cache resolutiors. Ex

amining the left hand component of the model is instruc-

tive. Even at a grid resolution df63, the hand is reason-

ably well-represented for this viewing distance, whalg

is clearly too coarse for the body components. These im-5, Implementation details

ages indicate that an automatic cache level-of-detail-algo

rithm could reduce both memory use and computation time. Uniform 3D grids can require significant amounts
One potential issue with caching nodes is a loss of sharpof memory. We store our cached field values in single-

features. The potential field around several sharp featuregrecision floating point, so a 128ache requires 8MB

is shown in Figure 6. The image pixels are colored by cal- of memory. Current hardware limitations prevent stor-

|

ing a significant number of fixed caches at this resolu- All timings are performed on an Intel 1.6Ghz Mobile Pen-
tion. In addition, the volume represented by a single cachetium 4 processor with 512MB of RAM.
can expand, making a fixed grid data structure undesir-
able.
To reduce memory usage we implement our uniform 3D 6-1. Medusa model
grid using a blocked memory scheme. We divide the uni-
form grid intok x k x k blocks of voxels, wheré is the We have tested the system with a complex hierarchi-
block resolution A voxel block is allocated only when one ¢l Medusa model. The model is composed of 9490 point
of the voxels it contains is needed to compute a field value. Skeletal elements segmented into 7 major components. The
The blocks are quickly identified using a 30-bit hash, us- Names and point counts are shown in the table below.
ing 10 bits per integer grid axis coordinate. This limits the
total grid size tq(1024 - k)3 voxels. Tail | Body | Chest| Left Hand| Neck| Head| Hair
Contlnuatlon_methods for polygonizing an |mp_I|C|t sur- 810! 840 | 40 570 20 | 700 | 6510
face [7] are designed to follow the surface. Most field eval-

ulatlogs are ner?r thefsurface, rr:_ence the recgjuwed voxels wille o -y major component is modeled as a blend of point skele-
ZSO e near the sur ﬁﬁe' Iqlt IS case oufrf. .ata strulctU(e '€fal elements distributed along a set of splines. All the fs0in
uces memory use while still permitting efficient evaluatio along each individual spline are grouped together intoa sin

of t_lr_f retz;lzonlftrucnlon'ﬂlters. eraff both gle optimized blend node to avoid excessive tree traversal.
e block resolution parametéraffects both memory A caching node with a resolution dR28? voxels was

usage and !nteract!ve polygonlgatlon yme. lAQecrgases placed above each major component in the model tree.
I pecomes increasingly Expensive 0 f!nd and |n_/al|date theWe approximate potential field reconstruction accuracy by
tgens?sb\:\?ecﬁuif(;egcéi(cjj Egszﬁrsn\?vilﬂtg:%cilg;ao?ﬁek;::“gni?I(:- our comparing reconst.ructeq and exact field values. qt triangle
ducing k 1o 4 cut our average memory usage by épproxi- mesh ver_tlces. Using this method, the mean tri-linear re-
mately 20%, but increased update times by approximately construgtlon error for the Medusa model withs® voxel

' caches is estimated to be approximatéfg. The error

25%‘ Kstafi . level fis concentrated in high-frequency regions, particulahnly t
urrent workstation processors contain several levels oty \we have not devised a global measure of reconstruc-

hardware memory cache to reduce memory access Iatencyﬁon accuracy, however it is suspected that the global error

The trao]IcltlonaI s;taucr?llocgtlon of a:grgIe ?D L:]mform grld. will be similar to the near-surface error because the cache
causes frequent cache misses, particularly when accessmgpacing is uniform.

adjacent voxels along the z axis. Our blocked allocation
scheme potentially increases processor cache coherency,
however this effect is difficult to isolate. 6.2. Static polygonization time

Memory requirements can be reduced even further by us-
ing an encoding scheme, at the expense of some reconstruc- We compare polygonization times for the Medusa model
tion accuracy. The range of potential field values that canwith and without caching nodes. All caches are cleared be-
occur in our system is small. Memory usage can be reducecfore each polygonization. Our results are shown in Table 1.
50 to 75 percent by encoding floating point values as one or Polygonization time without caching increases by ap-
two-byte integers. This technique is slightly more computa hroximately a factor of 4 when resolution doubles.
tionally expensive and decreases accuracy, so we do not uspoygonization time with caching is initially slower than

itin our evaluation. without because we require voxels to compute a sin-
gle tri-linear interpolation. Subsequently, polygoniaat
6. Results time reduces as the cache is populated. The ratio be-

tween cached times at consecutive resolutions decreases
Cache efficiency is evaluated by comparing polygoniza- because more cached voxels are re-used51&f poly-
tion times between two versions of the same model, onegonizer resolution, approximateB3% of all cache vox-
with cache nodes and one without. We use an optimizedels have been evaluated. The total memory allocated
version of the implicit surface polygonizer described in for caches is approximatel2MB at a block resolu-
[6] with the optional cubical decomposition enabled. When tion of 8 and 16MB at a block resolution oft (see sec-
computing a mesh vertex on a cube eddgebisections are tion 5).
performed to locate the implicit surface. We have repeated these tests with a variety of other mod-
The software is compiled with Microsoft Visual Studio els constructed from complex skeletal elements. Similar re
.NET 2003 in Release mode with default optimization flags. sults were observed.

proximately 1.25 seconds per frame. Non-cached timings
Cubes Cache NoCache Ratio were over50 seconds per frame. After completing this test,

393 5.77 4.90 0.8% the total memory allocated by the caches is approximately
. 25MB for both polygonizer resolution$(® and120%). As

64 10.34 14.36 1.4x shown in the previous sectio2MB of this memory is al-
1283 17.40 51.97 Ix located during the first polygonization.

Similar results have been observed while repeating these

2563 29.23 199.37 6.5 tests with other model components, and other models com-
5123 49.83 809.66 16 % posed of skeletal primitives more complex than point prim-
itives.

Table 1. Comparison of cached and non-cached -

polygonization times (in seconds) for Medusa model
at different polygonization resolutions. H,WMMAWW

6.3. Interactive polygonization time

We have shown that caching nodes are an effec-
tive means for decreasing static polygonization time.

However, the main benefit of caching nodes becomes ap N

parent when interactively manipulating model compo- N

nents. Figure 7 compares several different tests we per.

formed on the Medusa model with and without caching e At R R R b A i b A
nodes.

Polygonization Time in Seconds

. . Timestep
In each test we simulated translation of the Medusa heac , .
3 —e— Cached —4— Cached (No Hair) —#— Cached (2x Resolution)
component. The head was mov&iisteps towards the tail, L No Cache No Cache (No Hair)

then25 steps back to the original position. Along this path
the head intersects all other components of the model. An
initial polygonization was computed before running each
test, hence the cache begins partially evaluated. Polggoni
resolution was fixed at0? cubes, based on the initial model
bounding box.

Polygonization time is relatively constant for the non-
cached cases, which is expected. With caching nodes the
polygonization time rapidly drops over the first few frames. 6.4. Local update polygonization
Many of the caching node voxels for the head component
are being evaluated over these frames. During the restof the A common technique for improving interactive visual-
downward path small numbers of potential field values are jzation time in implicit modeling systems is to only re-

cached for other components as the head intersects themyolygonize the model in areas that have been modified. Sev-
This results in a relatively stable polygonization time. At grg| tests with and without caching nodes have been per-
step25 the upward path begins. The stable polygonization formed to simulate this behavior using our cubical decom-
time decreases at this point because no non-cached potersosition polygonizer[6]. The polygonization region is re-
tial field evaluations are necessary. stricted using the bounding box of model components that

Tests were performed with and without the hair compo- have changed. Because the cubes used are a subset of those
nent. The first few frames are computed more quickly with- used for full polygonization, the same triangles are gener-
out the hair component, however the stable polygonizationated and we can directly compare times between the two
time is essentially identical in both cases. This compariso cases. In our results we do notinclude the constant time nec-
shows that after the caches are populated, polygonizatioressary to stitch the update region to the existing mesh. Note
time is insensitive to the underlying model complexity and that cache memory usage is identical to the full polygoniza-
depends primarily on surface complexity. tion case discussed in the previous section.

Finally, polygonizer resolution is doubled 1803 cubes. The interactive assembly task simulation described in
The cached polygonization converges to a stable time of ap-Section 6.3 was performed using local updates. The average

Figure 7. Comparison of cached and non-cached
polgyonization times recorded while simulating inter-
active translation of Medusa head.

timing improvements are shown in Table 2. Results from
another test are also shown, in which we loaded only the
hair component and moved a small point skeletal element
through it. The point bounding box covers less thé&h of

the total hair volume.

Test Cubes Improvement
Head Translation 603 7x
Head Translation 1203 12x
Point / Hair Test 603 30x
Point / Hair Test 120° 47x

Table 2. Comparison of cached and non-cached
polygonization times for local-update polygonization
tests.Cubescolumn refers to polygonizer resolution,
Improvementolumn shows number of times speed-
up with caching nodes.

7. Conclusion and future work

We have described a new type of BlobTree node, the spa-

tial caching node. Our caching node approximates the po-

tential field of the caching node subtree using a set of exact

potential field value samples. The approximation process
reduces potential field evaluation complexity for the sub-
tree fromO(n) to O(1), wheren refers to the number of
nodes in the subtree.

We implement caching nodes using uniform grids
with subtree-dependent resolution. Our implementa-
tion uses tri-linear reconstruction for potential field wes
and tri-quadratic reconstruction for potential field gradi
ents. This combination of reconstruction filters produces
visually smooth meshes suitable for interactive visualisa
tion in an implicit modeling tool. Complex hierarchical
implicit models created using our interactive model-
ing tool are shown in figures 8 and 9 (see Color Plate).

We demonstrate an order-of-magnitude decrease g

in polygonization time when inserting caching nodes

into a complex hierarchical BlobTree model contain-

ing over 9000 point primitives. Our analysis suggests that
caching nodes are particularly effective when used in con-
junction with local-update polygonization.

Interactive visualization benefits both shape mod-
eling and animation prototyping. We anticipate that
caching nodes will provide a similar performance ben-
efit with other implicit surface operations, including

ray-tracing, collision detection and other polygoniza-
tion schemes.

There are a variety of avenues for future work on caching
nodes. A primary concern is memory management. Our cur-
rent implicit modeling tool requires the model designer to
manage placement of caching nodes. Ideally, an interactive
modeling system would infer appropriate cache placement
and resolution based on the designer’s actions.

The cost of cache updates can be significantly reduced by
dynamically re-structuring the BlobTree hierarchy. In-par
ticular, certain composition operators (such as the additi
blend) permit the contribution of a particular child node to
be directly 'subtracted’. Several complex operators with t
property are developed in[1]. Adaptation of these opesator
to BlobTree skeletal primitives could result in signifidsnt
decreased cache update times.

We use a blocked uniform grid scheme to minimize com-
putational overhead. It may be acceptable to trade some ef-
ficiency for higher reconstruction accuracy. Alternate-spa
tial data structures such as multi-grid methods may provide
this trade-off.

References

[1] E. Akleman and J. Chen. Constant Time Updateable Oper-
ations for Implicit Shape Modelind?roceedings of Implicit
Surfaces 9973—-80, 1999.

B. Araljo and J. Jorge. BlobMaker: Free-Form Modeling

with Variational Implicit SurfacesComunicaéo ao 12 En-

contro Portugiés de Computdip Grafica, 2003.

[3] A.Barbier, E. Galin and S. Akkouche. Complex Skeletal Im-

plicit Surfaces with Levels of DetaiProceedings of WSCG

12(4), 35—42, 2004.

L. Barthe, B. Mora, N. Dodgson and M. Sabin. Interactive

implicit modelling based orC! reconstruction of regular

grids. International Journal of Shape Modeling(2), 99—

117, 2002.

[5] J. Bloomenthal and K. Shoemake. Convolution Surfaces.
Computer Graphics (Proceedings of SIGGRAPH, 25{4),
251-256, 1991.

[6] J. Bloomenthal. An Implicit Surface Polygoniz&raphics
Gems IV Academic Press Professional Inc., 324—-349, 1994.

[7] J.Bloomenthal (Ed.). Introduction to Implicit Surfaces. Mor-

gan Kaufmann, ISBN 1-55860-233-X, 1997.

E. Ferley, M.-P. Cani, J.-D. Gascuel. Practical Volumetric

Sculpting.The Visual Computed 6(8), 469—480, 2000.

9] E. Galin and S. Akkouche. Incremental Polygonization of

Implicit SurfacesGraphical Models62, 19—-39, 2000.

S. Akkouche and E. Galin. Adaptive Implicit Surface

Polygonization using Marching TriangléSomputer Graph-

ics Forum 20(2), 67—-80, 2001.

L. Greengard. The Rapid Evaluation of Potential Fields in

Particle Systems. The MIT Press, ISBN 0-26207-110-X,

1988.

(2]

(4]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

R. Perry, S. Frisken. Kizamu: A System for Sculpting Digital
CharactersProceedings of SIGGRAPH 20047-56, 2001.

S. Frisken, R. Perry, A. Rockwood, T. Jones. Adaptively
Sampled Distance Fields: A General Representation of
Shape for Computer GraphicBroceedings of SIGGRAPH
200Q 249-254, 2000.

S. Hornus, A. Angelidis and M.-P. Cani. Implicit Modeling
using Subdivision-curvesThe Visual Computer2(3), 94—
101, 2003.

0. Karpenko, J. Hughes and R. Raskar. Free-Form Sketch-
ing with Variational Implicit SurfacesComputer Graphics
Forum, 21(3), 585-594, 2002.

S. Marschner and R. Lobb. An Evaluation of Reconstruction
Filters for Volume Rendering?roceedings of Visualization
1994 100-107, 1994.

K. Museth, D. Breen, R. Whitaker and A. Barr. Level Set
Surface Editing Operator&CM Transactions on Graphigcs
21(3), 330-338, 2002.

A. Pasko, V. Adzhiev, A. Sourin and V. Savchenko. Function
representation in geometric modeling: concepts, implemen-
tation and applicationsThe Visual Computerl1(8), 429—
446, 1995.

G. Turk and J. O'Brien. Shape Transformation Using Vari-
ational Implicit FunctionsProceedings of SIGGRAPH 99
335-342, 1999.

A. Witkin and P. Heckbert. Using Particles to Sample and
Contol Implicit SurfacesProceedings of SIGGRAPH 94
269-278, 1994.

B. Wyvill, A. Guy and E. Galin. Extending the CSG Tree
(Warping, Blending and Boolean Operations in an Im-
plicit Surface Modeling SystemYComputer Graphics Fo-
rum, 18(2), 149-158, 1999.

Figure 8. Medusa model with interactive modifica-
tions. Characters are composed of point primitives
placed on the surface with mouse using interactive
ray-surface intersection.

Figure 9. Complex hierarchical implicit models con-
structed interactively with spatial caching nodes. The
cup and medusa head were imported from an existing
BlobTree modeling system and interactively assem-
bled. The mouse character was created from scratch
in under an hour.

=

(@ (b) (©)

|

Figure 6. Sharp feature reconstruction using 128
cache and (a) Tri-linear reconstruction, (b) tri-
quadratic reconstruction, and (c) non-cached evalua-
tion. Thin red line indicates iso-surface.

